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AFIT/GA/ENY/08-M07 

Abstract 

The research presented here investigated the feasibility of 6.4 mm Lanthanum 

Hexaboride (LaB6) and Cerium Hexaboride (CeB6) hollow cathodes for low power 

electric propulsion applications (100-300W).  Two orifice geometries, one anode 

configuration, several anode and keeper currents, and a range of xenon flow rates were 

tested for the LaB6 cathode.  The CeB6 cathode underwent the same tests, with the 

exception of the second orifice geometry due to time constraints.  

An oscilloscope measured waveform behavior and a single Langmuir probe for 

plasma properties.  Infrared imaging studied the thermal characteristics of both cathodes 

and electron microscopy for surface contaminant analysis. High-speed imaging provided 

visual data for coupling plasma observations.   

The CeB6 cathode operated in spot mode as low as 1.5 A and 1.5 sccm with no 

heater or keeper power, and as high as 6 A, 1.5 sccm with 1 A keeper current.  The CeB6 

cathode was more susceptible to poisoning than the LaB6 cathode.  It also operated at 

slightly higher temperatures. 

The LaB6 cathode was not affected by poisoning and ran in spot mode as low as 

2.5 A, at 1.5 sccm with no heater or keeper power.  When the aspect ratio was reduced to 

0.25, the cathode operated as low as 1.4 A, with 1.5 sccm. The same spot/plume mode 

characteristics were observed for LaB6 as CeB6.  The study of both cathodes is presented 

here including suggestions for a 3 mm LaB6 cathode. 
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A    Richardson Coefficient 

T    Temperature (K) 

q    Particle Charge (C) 

e    Charge of an Electron (C) 

φ    Work Function (electron Volts) 

k    Boltzmann’s constant 

E    Electric Field (V/m) 

n    Number Density (cm-3) 

εo    Permittivity of Free Space 
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I.  Introduction 

Motivation 

In 1993, the Air Force Research Laboratory Propulsion Directorate at Edwards 

Air Force Base formed a committee with the endorsement of leaders from industry and 

the other branches of the military called Integrated High Payoff Rocket Propulsion 

Technology (IHPRPT).  The aim of this program is to improve and double the 

performance of United States rocket propulsion by 2010. The goals for these 

improvements are set out in five-year increments, ending in 2010.  In response to this 

program, entities throughout the United States, including universities and government 

agencies set out to meet these goals.  This program will not only improve high thrust 

missions, but also low thrust ones suited for electric propulsion. 

Electric propulsion exists in many forms, but the technology of interest for this 

research are ion and Hall thrusters.  Both produce low thrust, have high specific impulse, 

and very high efficiencies when compared to chemical rockets.  Satellites requiring 

precision attitude control and station keeping employ the use of electric propulsion today.  

The Air Force specifically uses this technology on TacSat - 2, employing a 200 W Busek 

Hall Thruster identical to the one at AFIT today, the first of its kind used in the US.  Ion 

thrusters however, have been used in US space missions since the early 1970’s.  Both of 

these thrusters utilize plasma to produce thrust, which must be ionized by electrons.  

Hollow cathodes provide the electron source for this technology and are the focus of this 

research. 

Hollow cathodes have been in use for the last several decades.  There are various 

forms of them, but all are used to create electrons.  Whether it is a few milliamps or 
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hundreds of amps, they have proven to be devices of prospect and intense investigation 

for the electric propulsion field.  Hall thrusters, ion thrusters, and plasma contactors all 

use hollow cathodes in various forms and configurations.  Other methods of creating 

electrons are abundant, but the longevity and peak current capability of hollow cathodes 

is unrivaled.  They have proven their worth in many laboratory investigations, one lasted 

28,000 hours.1  Recently developed hollow cathode technology may alleviate some life-

limiting factors that many traditional hollow cathode technologies have.2  Consequently, 

long life equipment for spacecraft thruster technology is evolving.  The need for low-

cost, robust, and efficient hollow cathodes is instrumental in the advancement of the field 

and fulfillment of the IHPRPT goals. 

Problem Statement 

The current state-of-the-art hollow cathode for US space propulsion requires 

nitrogen purging to ensure the impregnated cathode insert is not contaminated by water 

vapor or oxygen.  If this purge system were to fail, the cathode’s performance could be 

adversely affected due to its sensitivity to contaminate species.  In addition, high current 

impregnated hollow cathodes currently used by the US have shorter lifetimes than lower 

current designs, predominately governed by the evaporation rate of the impregnate.  Low 

current designs however, suffer from several thermal inefficiencies forcing the cathode to 

consume a large percentage of a sub-300 W thruster’s overall power. 

Research Objectives 

The objectives of this research were to investigate the feasibility of lanthanum 

hexaboride (LaB6) and cerium hexaboride (CeB6) as low current hollow cathode emitters 
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(<10A).  This research also intended to compare lanthanum hexaboride and cerium 

hexaboride cathodes’ power, flow, and temperature requirements for operation, and 

determine the benefits of one technology over another.   

Research Focus 

The work presented here focused on studying the recent developments in emitter 

technology for hollow cathodes and their feasibility for use in low power applications.  

LaB6 and CeB6 emitters were the two insert materials of choice.  The author acquired and 

evaluated the current state of the art design.2  While experiments have already studied the 

use of LaB6 emitters for hollow cathodes, no work has been published for CeB6 as a 

hollow cathode electron emitter.  Additionally, all work in the US published on boride 

hollow cathodes are for high-current applications.3,4,5,6,7,8,9,10  This study attempted to 

investigate their prospect for low-current designs, whether it is a hollow cathode 

configuration or something else. 

This research directly compared LaB6 to CeB6 for one anode geometry, but for 

several emission currents, flow rates, and orifice geometries.  The primary items of 

interest were the power and flow requirements of CeB6 compared to LaB6, how each 

emitter material behaved after operation, ways to improve the thermal efficiency of the 

cathode design, and the operation point at which the plasma transitions from spot to 

plume mode.  A detailed analysis of the plasma behavior of each cathode is included, and 

compared the cathodes to their impregnated tungsten counterpart. 
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Investigative Questions 

The major question this research attempts to answer is which boride cathode is the 

best for low current applications?  In order to determine this, one needs to know which 

cathode requires the lowest flow rates and power to maintain spot-mode operation and if 

this can be improved with orifice geometry.  Next, what is the ignition power 

requirements compared to impregnated cathodes?  What is the temperature of each 

cathode and which is the lower of the two?  The lifetime of boride inserts is limited by 

their evaporation rate, which is a function of temperature.  The evaporation rate’s 

temperature dependence emphasizes the importance of measuring the operating 

temperature of both cathode and comparing them to each other.  Temperature data also 

helps answer the question of how much power the cathode uses and its correlation with 

temperature.  Finally, did any contaminate materials form on the insert surface and affect 

its performance or lifetime, and what kind of contaminants formed on the surface?  After 

analysis, the best cathode was selected and compared to an impregnated cathode. 

II. Literature Review 

Hall Thruster Applications  

 All electric propulsion uses some mechanism to create plasma, which in turn 

produces the rocket’s thrust.  Hollow cathodes demonstrate wide use for this 

technology.2,3,4,10,11,12,13,14,15,16  The Soviet Union initially flight-tested Hall thrusters in 

1972.14  While invented here, the United States did not actively pursue this technology 

until 1992.15  When compared with other electric propulsion devices such as the ion 

thruster, the Hall thruster demonstrated slightly higher levels of thrust (~up to 5 N) and 

lower levels of specific impulse (~1000-2000 s).  The efficiencies were also lower than 
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ion thrusters, ~ 50%.15  Nevertheless, the Hall thruster proved to a very reliable 

technology for satellite station-keeping and orbit-raising.  The Hall thruster’s principle of 

operation is illustrated in Figure 1. 

  

Figure 1.  Hall Thruster Schematic3 

The Hall Thruster’s propellant is a neutral gas stored in a pressurized tank (xenon, 

argon, or krypton) and a precise mass flow controller system limits the flow to a few 
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mg/s.  This propellant flows into the thruster through a gas diffuser.  The diffuser allows 

the propellant to spread evenly throughout the thruster.  There is an axial electric field 

and a radial magnetic field present in a Hall thruster.  An anode creates a potential at 

approximately 300 V or more, known as the discharge or anode potential.  

Electromagnets positioned on the central axis of the thruster create the radially directed 

magnetic field.  On the outside of the thruster is the hollow cathode (or sometimes a 

tungsten wire for terrestrial applications) used to create electrons.  Free electrons 

generated from the cathode attract to the net positive potential of the anode and flow 

toward the thruster itself.  The combination of the electric and magnetic field creates the 

“Hall” effect and causes the electrons to travel a much longer distance through the 

thruster chamber before the anode collects a fraction of them.  A stronger magnetic field 

increases the ionization efficiency and decreases the frequency of wall-collisions.  

Simultaneously, a gyrating region of electrons ionizes the neutral gas as it passes through.  

The ions closest to the downstream end of the Hall thruster pass through an acceleration 

zone resulting in thrust.  The electrons from the hollow cathode continue the ionization or 

“discharge” process, but they also act to charge neutralize the plume of the thruster.15  

For low power applications (100-300 W), the presence of the hollow cathode reduces the 

propellant utilization efficiency and power efficiency of the hall thruster, requiring up to 

10 percent of the total propellant flow.17 

Ion Thruster Applications  

 Like Hall thrusters, ion thrusters also employ hollow cathodes.15,18,19,20,21 Harold 

Kaufman at NASA Glen Research Center (GRC) originally developed an efficient ion 

thruster design in the late 1950’s.  An ion thruster can have total efficiencies as high as 
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~80% and specific impulses as high as ~8000 s.  However, they produce lower thrust 

density levels than Hall thrusters.  Consequently, ion thrusters prove to be better suited 

for deep space missions.  See the depiction of the operation of an ion thruster in Figure 2 

below.   

 

Figure 2.  Ion Thruster Schematic20 

Similar to the Hall thruster, propellant flows through to a diffuser and into the 

discharge chamber of the ion thruster.  The discharge chamber is at a high positive 

potential, 500-1000 V, and the anode is the small plate protruding from it.  The anode 

potential is typically between 20 and 50 V higher than the discharge chamber.  There is a 

hollow cathode at the center of the discharge chamber.  Electrons leave the cathode and 

gyrate along the lines of the magnetic field toward the anode until they are collected.  The 
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magnetic field acts to increase ionization efficiency by increasing the electron mean-free-

path and reduce wall-collisions.  As the electrons collide with the neutral atoms, plasma 

is created in the discharge chamber.  The end of the thruster usually has two grids, called 

ion optics (older designs used only one).  Without these grids, an ion thruster cannot 

produce thrust.  The first grid is at a slightly lower positive potential than the plasma 

within the discharge chamber. Closely following the screen grid is the accelerator grid. 

The accelerator grid is at a large negative potential relative to the screen grid.  As the ions 

migrate towards these grids they pass through a large potential change and are 

accelerated out the thruster.  An additional hollow cathode is outside the grids to charge-

neutralize the ion beam. 

Plasma Contactor Applications 

 The third dominant technology utilizing hollow cathodes for space applications is 

the plasma contactor.22  Spacecraft can emit electrons from their surface by means of 

photoemission or obtain large charge buildup due to geomagnetic storms.  This creates a 

net charge relative to the space plasma.  The charge presence can damage or perturb 

instrumentation and sensitive devices on spacecraft by rapid and violent discharging.  In 

order to reduce and sometimes eliminate this phenomenon, a plasma contactor regulates 

the charge of the spacecraft by emitting or collecting electrons to and from the space 

plasma.  The hollow cathode acts as the electron source for this device.  One real world 

example of a spacecraft using this device is the International Space Station. 
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Cathode Technology 

 Cathodes, the major component of the technologies describe above, have a wide 

variety of designs.  Some cathodes are as simple as a wire passing current through until it 

glows white hot to emit electrons.  Others are more complex, requiring propellant and the 

presence of other electrodes to create electrons.  The first type of cathode is the tungsten 

filament.  Figure 3 shows a tungsten filament used on an ion source.   

 

Figure 3.  Ion Source with Tungsten Filament Neutralizer23 

Tungsten filaments are not used in space applications because of their very short lifetimes 

and limited performance.  High temperatures required to achieve sufficient electron 

emission, tungsten evaporation, and sputter erosion contribute to the short lifetimes, 

typically a few hundred hours or less.  However, their electron emission behavior is well-

described by equation 1, known as the Richardson-Duschman equation.  This 

fundamental behavior is characteristic of most electron emitters. 

j A T2
⋅ e

q− φ⋅

k T⋅
⋅       (1) 

The Richardson-Duschman equation describes a relationship between the temperature of 

the wire and the amount of current it is capable of emitting by thermionic emission.  φ is 
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the work function of the material used as the electron emitter.  This is a material 

dependant property, for tungsten, it is 4.5 eV.19  As one can see, a higher work function 

requires higher temperature and ultimately more power to achieve the desired electron 

current density.  A is the emission constant, specific to each material as well.  One must 

be cautious when using this equation alone to design an electron emitter.  The electron 

emitter can melt if the temperature is too high.  Equation 1 allows the designer to 

calculate the maximum theoretical emission current assuming the emitter’s melting 

temperature is known.  One can also see current density will increase with decreasing 

work function.  Thus, a major pursuit of research is finding robust low work function 

emitters.   

Another consideration for cathode design is the space charge limit.  The reason 

the filament works well as a stand-alone emitter is due to immersion in plasma.  Equation 

2 shows the “space-charge limit” for an electron emitter immersed in plasma.  

jS
κ

2
ni⋅ e⋅

k Te⋅

me
⋅

     (2) 

For the tungsten filaments used in thrusters, the plasma densities are sufficient to allow 

the wire to reach the current density required to create a discharge.  The dense plasma 

pulls the electrons away from the filament by the formation of a sheath.  As equation 2 

shows, this depends on the electron temperature, Te, and ion density near the filament, ni.  

The constant κ is typically 0.5.19  By knowing or measuring the terms shown in equation 

2, one can calculate the maximum emission current the plasma sheath is capable of 

extracting from the filament.  These two equations determine the appropriate emitter and 

plasma environment to suit a given application. 
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A second type of cathode is the single crystal emitter.  These are widely used in 

electron microscopes.24  Due to their low work function (~2.4-2.8 eV), resistance to 

contamination from trace gases, and their low evaporation rates, the two primary 

compounds used in these emitters are lanthanum hexaboride and cerium hexaboride.2,19  

Figure 4 depicts a lanthanum hexaboride crystal emitter. 

 

Figure 4.  Lanthanum Hexaboride Crystal Emitter25 

Ohmic heating from electron flow through the mounting posts drives the electron 

emission from the crystal.  Small pyrolytic graphite mounts with high cross-plane 

resistance reach sufficient temperatures for the crystal to emit electrons.  These cathodes 

require very low levels of power (~10-20 W) to reach useful current levels.26  Equations 1 

and 2 also apply to single crystal emitters.  This type of cathode has been proven a viable 

technology for some electric propulsion applications.19    

The final cathode technology discussed here is the hollow cathode.  There are 

many different versions of hollow cathodes, but the most common style for space 

applications is the orificed hollow cathode, shown in Figure 5.  The term “orificed” 

simply means there is a plate present with a small hole in the center at one end of the 

cathode.  Mirtich and Goebel discuss some other designs without orifice plates.18,15 
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1. Insert Region 
2. Orifice Region 
3. Cathode-to-Keeper Region 
4. Coupling Region 

Figure 5.  Orificed Hollow Cathode 

Instead of using Ohmic heating of a wire or crystal emitter, the hollow cathode 

has a tube containing a low work function material called an insert.  A heater filament 

wrapped around the tube containing the insert heats it to a temperature sufficient for 

electron emission.  A neutral gas flows into the cathode tube for the creation of plasma in 

the insert region. The keeper, a positively biased electrode, extracts electrons from this 

plasma through the orifice.  The presence of this electric field and the electric field within 

the insert region creates a phenomenon known as the Schottky effect.  This enhances the 
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peak current and results in a much lower effective work function, described by equation 

3.  ε0 is the permittivity of free space and E is the strength of the electric field. 

φeff φ
q E⋅

4π ε0⋅
−

    (3) 

Hollow Cathode Operation and Physics 

Electron Emitter 

 Field enhanced emission is a major advantage of hollow cathodes over other 

cathodes.  Utilization of this phenomenon depends heavily on the insert work function 

and its dimensions.  Some emitters consist of porous tungsten impregnated with barium, 

barium oxide, alumina, and calcium oxide mixtures.  The impregnate lowers the surface 

work function of the insert (~2.0-2.4 eV).15  As the insert reaches it operating temperature 

(~1100°C), the gaseous barium and barium oxide migrates to the surface of the emitter.  

This mechanism ultimately lowers the surface work function.  These emitters have 

demonstrated operation for more than 28,000 hours.1  However, because impregnated 

cathodes rely upon a chemical reaction to maintain the low surface work function they 

require very high purity propellant. Consequently, they are very sensitive to oxygen and 

water vapor contamination.2  When the impregnate supply is exhausted, the insert no 

longer maintains a low work function.  Thus, the lifetime is limited by the evaporation of 

the impregnate gases. 

Pure tungsten impregnated inserts have been the primary hollow cathode emitter 

for a number of years in the United States.  However, Polk et al. began investigations into 

newer emitter technology involving a range of materials.27  One material discussed in his 
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paper is a porous tungsten-iridium emitter with the same impregnates as above.  The 

work function for this metal matrix ranges between 4.25 and 4.3 eV.  Research suggests 

this matrix can reduce the loss of barium by a factor of six or more, and may be more 

resistant to oxygen and water vapor contamination than traditional inserts.  In addition, 

the combination of the matrix and the impregnate produces a work function lower than 

pure tungsten impregnated emitters.27  Alternate configurations of the porous tungsten 

emitter are also investigated.  Polk et al. provides a detailed description of that work.27 

Lanthanum hexaboride (LaB6) is the next emitter material currently drawing 

attention in US electric propulsion research.2,3,4,5,10,19  The potential benefits of LaB6 

emitters over others are their lower evaporation rates and higher resistance to oxygen and 

water vapor contamination.2,15,28,29,30,31  LaB6 is unique because it does not require an 

impregnate to demonstrate a low work function.  Instead, it is either grown in single 

crystal form or press-sintered into polycrystalline form. 

The LaB6 work function depends on the surface composition of the crystal and its 

orientation.15  For stoichiometric (LaB6) or nearly stoichiometric (LaB6.06 or similar) 

crystals, the work functions have been reported to range as low as 2.67 eV and as high as 

2.87 eV resulting in operating temperatures of approximately 1650°C.2  Studies like the 

one performed by Storms and Mueller used polycrystalline LaB6.  Polycrystalline emitter 

work functions are an average of each crystal’s work function given its individual 

composition and orientation.30  This may present some difficulty in duplicating the work 

function of polycrystalline inserts from cathode to cathode.  Polycrystalline samples have 

been the primary inserts because single crystals are too difficult to machine into the 

hollow tube geometry used by most hollow cathodes.26   
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The final emitter discussed here is cerium hexaboride (CeB6).  It reportedly has a 

lower work function (2.5-2.62 eV for single crystal) and evaporation rate than 

LaB6.7,24,28,30,31  It is reported to demonstrate the same resistance to poisoning as the LaB6 

cathodes.7,24,30  Although there is published data on single crystal CeB6 emitters, no 

research has investigated the work function of polycrystalline CeB6 for hollow cathodes.  

Its operating temperature is approximately 1500°C.7,26,30 

 Regardless of the emitter material, the plasma physics are largely the same.  

Figure 6 shows a schematic of the discharge process inside the insert region of an orificed 

hollow cathode. 

 

Figure 6.  Hollow Cathode Insert Plasma Physics 

The cathode insert emits electrons after it has reached a sufficient temperature, usually 

initiated by an external heater filament.  Once this process begins, a negative charge 
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develops at the insert surface shown by the gray region of the schematic in Figure 6.  Due 

to the high electron densities near the surface, a double sheath develops.17,38 The 

electrons predominantly emit in two ways.  First, electrons leave the insert as a result of 

photoelectric emission.  Second, electrons accelerate through the developed sheath, 

known as field enhanced electron emission or the Schottky effect.  Equations 1 and 3 

describe the Schottky effect.  The thickness of the sheath is on the order of a Debye 

length λD. 

λD
ε0 k⋅ Te⋅

ne q2
⋅      (4) 

The Debye length describes the area of influence each charged species has on another.  

Equation 4 shows the Debye length in dense plasmas is small.  This results in a very 

strong electric field within the hollow cathode insert.   

The insert region has high plasma densities, low electron temperatures, and low 

plasma potentials.  As a result, ion sputter erosion plays a minimal role in the insert’s 

life.15 In addition, the cathode has effectively no space charge limit due to the high-

density levels in the insert plasma.  This allows hollow cathodes to produce very high 

current levels with low voltages and little power compared to the total power of the 

system.  The hollow cathode design also allows it to operate in a self-heating mode. This 

mode requires no power to the heater and can be divided into three categories.15  Ohmic 

heating of the orifice plate drives the first self-heating mode.  This mode is characterized 

by high internal cathode pressures in the insert and orifice.  Highly resistive plasma forms 

within the orifice region.  By convection, the orifice plasma transfers heat to the orifice 

plate then conducts and radiates it to the insert, raising the insert’s temperature.  Once 
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this process begins, it provides sufficient heat for the cathode to maintain electron 

emission without operating an external heater.  The insert electron temperatures for 

cathodes using this heating mode are typically higher than the other two and increases 

with internal pressure.15  The second self-heating mode results from ions striking the 

insert surface as they fall through the sheath potential within the insert.  The final mode is 

electron heating that results from Maxwellian electrons having sufficient energy to 

exceed the sheath potential of the cathode and strike the insert surface.15 The sheath 

potential in the insert of all hollow cathodes is relatively low and decreases with internal 

pressure.  

In addition to the cathode’s self-heating modes, the insert’s length is also an 

important characteristic.  With high current designs, the insert is longer because the 

plasma attachment point is further upstream.15  With low current designs, the insert is 

naturally shorter, which acts to reduce the thermal mass and ultimately power 

consumption of the cathode. 

Orifice Region 

 The next region, downstream of the insert, is the orifice of the hollow cathode 

shown in Figure 7.  Small orifice diameters with deep lengths (large aspect ratios) similar 

to the orifice geometry in part A of Figure 7 allow the first self-heating mode to 

dominate.15,32  The long narrow channel of the orifice restricts the plasma and increases 

the cathode internal pressure.  The plasma within this region forms an axial electric field 

and conducts the current from the insert to the coupling plasma.  This field penetrates 

further upstream into the insert with larger orifice diameters and smaller aspect ratios, as 

depicted in the figure below.   
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Figure 7.  Hollow Cathode Orifice Geometries15  

A) Large Aspect Ratio B) Medium Aspect Ratio C) Small Aspect Ratio 

These parameters also dictate what potential the keeper electrode must start at to initiate 

the discharge of the cathode.  The plasma only penetrates a few millimeters downstream 

of type A orifice designs.  Their long narrow geometries limit the peak current capability 

of the cathode.15 

 Orifice geometries with medium aspect ratios allow the cathode to run at slightly 

lower pressures.  Cathodes with this intermediate orifice operate by ion heating, electron 

heating, or a combination of both.  The cathode design described in this study falls into 

this category and is similar to the part B geometry in Figure 7.  

As the depth of the orifice increases, more ionization and power consumption 

occurs.  With larger orifice diameters, the peak current capability increases. These require 

higher flow rates to maintain the spot mode emission described below.  Part C of Figure 

7, usually called an orifice free cathode, primarily self-heats by ion bombardment. 

A 

B 

C 
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Cathode-to-Keeper Region 

 The next section of the hollow cathode plasma is the cathode-to-keeper region. 

The plasma densities within this region are lower, therefore the Debye lengths of each 

constituent is larger.  In quasi-neutral plasmas, electrons move toward the positively 

biased electrode, the keeper.  This electrode pulls the electrons out of the insert region of 

the cathode.  Once this process begins, the cathode is “lit” and electrons stream out of the 

cathode.  This cathode operates in two plasma region modes, spot and plume.  The spot 

mode is defined by lower discharge voltages (<40 V) and electron temperatures (<4 eV), 

higher flow rates, and small voltage fluctuations (<1 V).   A small luminous spot is 

present during this mode, expanding monotonically downstream of the cathode.  Large, 

high frequency voltage oscillations (>5 V, >100 kHz), lower flow rates, higher discharge 

voltages (>40 V) and electron temperatures characterize the other mode of operation, 

plume mode.  Plume mode occurs during higher discharge currents and lower flow rates.  

During this mode, the spot disappears and a large diffuse plume is present. The plume 

mode has the potential to accelerate the erosion of the cathode due to the high-energy ion 

bombardment generated from dense regions of plasma near the hollow cathode.33,34  The 

plume mode also acts to increase the impedance of the plasma as observed by Mikellides 

et. al.43 

Coupling Plasma Region 

 Following the cathode-to-keeper plasma region is the coupling plasma-region. 

The behavior of this plasma region is very dependent on operating conditions and is 

similar to the cathode to keeper region, exhibiting spot and plume mode as well.  

Generally, the plasma potential and electron temperature profiles follow a valley shaped 
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contour without an applied magnetic field and trench-like contours with an applied 

magnetic field.35,36  For some low flow, elevated current conditions, Goebel observed the 

formation of a localized plasma density structure he called plasma balls, shown in Figure 

8.15  Martin and Williams also observed the formation of a similar structure they called a 

“plasmoid” for similar operating conditions of the coupling region of the hollow cathode. 

See Figure 9.  

 

Figure 8.  Plasma Ball15 

 

Figure 9.  Plasmoid Density Contour35 

Plasmoid 

x 109 cm-3

4.5 sccm @ 4 Amps 6 Amps

x 109 cm-3
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The plasmoid structures produced higher electron temperatures and appeared further 

away from the cathode under higher flow rates and discharge currents, somewhat 

indicative of the plume mode.  Goebel also observed plasma balls appearing further 

downstream under higher flow conditions.  The plasma was also observed to adjust itself 

to maintain the current being drawn from it under operation without an applied magnetic 

field.  The behavior of the coupling plasma also differs as the anode geometry changes.  

Martin and Williams did an extensive study of a variety of anode configurations to show 

the different characteristics of the cathode plume.  The primary concerns with the near 

keeper regions of the cathode coupling plasma are to determine what causes the erosion 

of the keeper electrode.  The plasma balls and plasmoids may provide regions for high-

energy ion creation and accelerate the sputter erosion of the keeper and cathode.  This is 

especially true if the plasmoids form during high amplitude and frequency oscillations.  

However, these plasma ball and plasmoid structures rarely occur.  Most expansions of the 

cathode coupling region are monotonic. 

Boride Cathodes 

As discussed above, direct emission cathodes use boride-based materials.  The 

initial use of boride cathodes dates back to the late 1940’s.8   James Lafferty addressed the 

issue of a need for higher emission current requirements for cathode ray tubes.  In his 

study, he concluded rare-earth borides are better emitters than alkaline earth or thorium 

borides.  He observed LaB6 was the best emitter of the samples he tested.  This emitter 

technology went largely untouched in the US for electric propulsion applications until the 

late 1970’s.  However, it was widely used for electron beam applications in the US and 

Soviet Union.2,31  Goebel, et al., first demonstrated use of LaB6 as an emitter for hollow 
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cathodes in US electric propulsion applications in 1979.4  Later, Goebel et al. 

demonstrated the use of this device for a high current plasma source in 1985.9  The US 

did not seriously consider LaB6 as an emitter for hollow cathodes used in Hall and ion 

thrusters until 2005.2  The most recent studies revealed the true robust nature of the 

emitter and its capability as a high current substitute over other insert materials.  Until 

now, most LaB6 crystals were arranged in a manner similar to that shown in Figure 10. 

 

Figure 10.  Early Lanthanum Hexaboride Hollow Cathode 

As shown in the figure, the emitter is in the form of a solid pellet.  Observed in some 

research, this cathode design required continuous heater operation to maintain the proper 

temperature for the crystal to produce sufficient electrons.17   Goebel found a hollow tube 

insert with an internally mounted heater could self-sustain operation without power to the 

heater.  However, the cathode required discharge currents above 100 A.4 



 

38 

The most recent design is similar to conventional hollow cathodes, and is capable 

of self-sustaining the plasma at currents as low as 10 A.2  The crystals for all of these 

studies are polycrystalline, formed by press sintering the compound to approximately 70-

90% theoretical density.  The work function from polycrystalline samples is an average 

of each crystal’s work function.2  This may also provide a variation in work function, 

changing from insert to insert, resulting in a wide range of values as reported in the 

literature.2  However, a more likely candidate is the variation in density between inserts.  

An alternative to LaB6, reducing the power requirements for cathodes, would be 

beneficial for low power applications (100-300 W).  One possible candidate for this is 

cerium hexaboride (CeB6).   

No work has been published investigating the use of CeB6 as a hollow cathode 

electron emitter.  However, Wirz completed the first study to use this crystal as an emitter 

in a direct emission configuration for miniature ion thrusters.19   CeB6 has been used in 

electron beam applications just as LaB6, primarily because the work functions and 

evaporation rates are lower than LaB6.7,8,28,31  Work functions for CeB6 range from 2.3-

2.5 eV.37  Like LaB6, they also depend on the chemical composition of the surface of the 

crystal.  Nevertheless, CeB6 has demonstrated superior emission current densities at 

lower temperatures than LaB6.7  

All of the former studies for CeB6 used single crystal borides.  No press-sintered 

studies were presented for CeB6 because the single crystal form is known to have a 

consistent and repeatable work function.  It not only depends on the composition of the 

material, but the crystal plane orientation as well.  Some planes have lower work 

functions than others do.  The difficulty arises when tube geometries used in hollow 



 

39 

cathodes are required.  The single crystal emitter cannot be machined into a hallow tube 

because of its brittle nature, a problem common to CeB6 and LaB6.  As a result, easier to 

machine polycrystalline inserts for LaB6 have been used for hollow cathodes in the past.  

As a result, this experiment used polycrystalline material for the CeB6 insert as well. 

Experimental Considerations 

Important parameters to understand the performance of hollow cathodes include 

propellant flow rates, insert and heater operating temperature, insert material evaporation 

rates, and poisoning effects.  The voltages, currents, and waveforms of each cathode 

component are also important.  The electron temperature, plasma potential, and plasma 

densities are three other parameters studied as well. 

The first experimental consideration is propellant flow rates.  Most research has 

employed precision mass flow controllers from various vendors, able to control the flow 

over a wide range.  Xenon has been the primary propellant researched. 

To determine the desired operating temperature, some studies have simply spot 

welded thermocouples to the desired locations of the hollow cathode.17,27  Type K 

thermocouples have been used as well as type R and C.  The assumption was the orifice 

plate temperature was approximately equal to the insert temperature.  This was possible 

because the orifice plate was electron beam welded to the cathode tube and it directly 

interfaced with the insert.  Floating thermocouple readouts to prevent the thermocouples 

from acting as a short to ground is also common practice.  Others used thermocouples as 

a calibration point but then used an optical pyrometer to measure the insert operating 

temperature.27,38   An additional method employed by Domonkos was the use of an 

infrared camera, calibrated by spot-welded type R thermocouples.  The advantage of 
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using this camera over other methods was the ability to see the temperature distribution 

along the length of the cathode tube.  This allowed one to quantify the amount of heat 

conducted to the base of the cathode.  Another reason for measuring the temperature is to 

ensure the insert operates at the ideal temperature to prevent contamination, reduce 

evaporation, and maximize insert life. 

To determine the evaporation rate of a LaB6 insert, Lafferty used a configuration 

allowing him to heat the material to its operating temperature under vacuum and open a 

shutter for the material to pass through to a sheet of cooled tungsten.  A molybdenum 

anode masked the cold tungsten sheet used for LaB6 condensation.  Knowing his 

exposure area, temperature, duration, amount of material, and distance to the collector, he 

calculated the evaporation rate of the material.8  Another study simply measured the 

diameter of the material in combination with some other calculations after operation to 

determine the amount of material lost due to evaporation and subsequent sputtering.24 

In addition to evaporation, another life limiter for hollow cathodes is 

contamination.  To determine how much of a contaminant is present, auger electron 

spectroscopy or energy dispersive x-ray analysis is often employed.19  This method 

detects the constituents of the surface of a material, a reliable procedure for determining 

if a cathode insert has been contaminated.    

The next experimental consideration is the potential and current of the keeper, 

anode, and heater.  Previous studies employed the use of an oscilloscope to monitor the 

waveform behavior of the anode and keeper voltages and multi-meters for the raw anode, 

keeper, and heater voltage and current.17,35  Spot or plume mode operation can be 

determined from the oscilloscope.  Another method used Langmuir probe data to 
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determine the transition from spot to plume mode.32, 34,35,39  When the cathode operates in 

plume mode, there is a significant increase in electron temperature.  A Langmuir probe is 

well suited to measure this increase and may be a more sensitive method than the 

waveform monitoring. 

The Langmuir probe also measures plasma potential, electron temperature, and 

plasma densities.  Plasma potential allows one to calculate the energy of the ions hitting 

the cathode and deduce erosion rates for a given operating point.  Electron temperature 

indicates whether the cathode is in spot or plume mode operation.  Plasma densities give 

information regarding mechanisms for wear of the cathode.  Regions of high-density ions 

are more likely to accelerate wear of the cathode during plume mode operation. 

III. Methodology 

Vacuum Facility 

 

Figure 11.  SPASS Facility 

Cryo-Pumps 

Helium Refrigerators 
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 All testing was performed in the AFIT Space Propulsion Analysis and Simulation 

System (SPASS) vacuum chamber, Figure 11. In September of 2006, the author assisted 

Maj. Richard Branam in the procurement of this facility.  Due to the nature of the 

experiments, every effort was made to ensure the facility met the thruster pumping 

requirements for testing and stayed within the budget, however one major constraint 

made this a challenge. 

 There are several pumps used in vacuum chambers, one of which is a cryogenic 

pump.  Others include turbo molecular pumps, ion pumps, and mechanical roughing 

pumps.  Most vacuum chambers use a mechanical roughing pump to draw the pressure of 

the chamber down to around 100 mTorr.  This is standard practice and implemented for 

the SPASS facility using a Leybold Trivac D65B rotary vane mechanical pump.  Then 

there is a secondary pump used to bring the chamber down to even lower pressures.  

Turbo pumps use turbine blades to trap the gas molecules and a roughing pump draws 

them from the turbo pump.  Turbo pumps are only capable of one or two thousand liters 

per second of nitrogen and do not have the pumping speed required for many electric 

thrusters.  The ideal pump used by most space propulsion facilities is the cryogenic 

pump.  This pump acts as a cold trap for the gases as they condense on the surface of the 

cooled pump, lowering the pressure. 

Many facilities achieve these low temperatures by using liquid nitrogen for the 

first stage of the two stage cryogenic pumps.  Some pumps are capable of speeds of up to 

40,000 l/s on xenon gas.  The building did not have a supply of liquid nitrogen; therefore, 

the chamber was constrained to using an alternative refrigerant.  The challenge came in 

finding a chamber that could maintain a high pumping speed and not require liquid 
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nitrogen.  The solution was from another cooling method employed by cryogenic pumps, 

helium refrigeration.  The blue boxes in Figure 11 are of the helium compressors used in 

the SPASS chamber.  These allowed the cryo-pump to drop to temperatures as low as 15-

20 K.  However, as the pumps grow in diameter, the helium refrigerators reach a limit.  

After some investigation, the largest helium refrigerated pumps available were from CVI 

Torrmaster at 0.5 m diameter.  One of these pumps is capable of 4,000 l/s for xenon gas.  

Four of these provided sufficient pumping and allowed experiments to run at flow rates 

as high as 10 sccm and maintained pressures around 3*10-5 Torr.  After posting these 

specifications, the chamber was built and delivered by PHPK Technologies in June of 

2007. 

Hollow Cathode Assembly 

 Two hollow cathodes based on the design from Goebel were fabricated.2  The 

author completed all assembly and testing described herein.  One was for testing LaB6 

and the other for CeB6 inserts.  With the exception of the insert material, both cathodes 

were identical.  Figure 12 shows an engineering drawing of the hollow cathode design. 
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1. Hollow Cathode 
2. Enclosed Keeper 
3. Mounting Flange 
4. Heater Filament 
5. Insert 
6. Graphite Support Tubes 
7. Orifice Plate 

Figure 12.  Hollow Cathode Assembly 

Every part of a hollow cathode is designed around the electron emitter.  The first 

consideration for many designs is how to contain the emitter.  Simply due to the nature of 

the insert’s geometry, a hollow tube is fitting.  The diameter of the tube is obviously a 

function of the diameter of the insert.  The insert’s diameter must be greater than that of 

the mean free path of an electron.38  Otherwise, the electrons would collide with the walls 

of the insert and plasma would be difficult to generate.  The peak current capability is 

also a function of the insert’s diameter.  Larger inserts have more surface area, making 

more current available when needed.  The length of the insert is a function of the plasma 

attachment length and the peak current requirement.  Longer inserts increase the surface 
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area and total current capability of the cathode.  If the insert is too short, then there is 

little current drawn from it and the plasma will not be able to attach where needed.  A 

picture of the CeB6 and LaB6 inserts are shown in Figure 13 and Figure 14 respectively.  

Each is 6.4 mm outside diameter, 3.8 mm inside diameter, and 25.4 mm long.  The 

theoretical density of the CeB6 insert was approximately 70% and the LaB6 80-90%. 

 

Figure 13.  Cerium Hexaboride Insert 

 
Figure 14.  Lanthanum Hexaboride Insert 

 Typical materials used for hollow cathode tubes include molybdenum-rhenium 

alloys due to their resistance to oxygen adsorption, tantalum, titanium, molybdenum, and 

sometimes graphite.  For this particular design, the hollow cathode was constructed out of 

molybdenum, shown in Figure 15.   
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Figure 15.  Molybdenum Hollow Cathode Tube 

However, the reader must be aware that molybdenum is not as resistant to oxygen 

adsorption like a molybdenum rhenium alloy.  This is an important consideration for 

impregnated cathodes, but is not an issue with the boride based ones.  For the case of 

boride cathodes, one has to be careful when selecting materials.  Most refractory metals 

including molybdenum allow the boron to diffuse into its lattice and starve the emitter of 

its required chemistry for electron emission.8  To reduce this effect, graphite (99.5%pure) 

is commonly used when interfacing with boride emitters.  However, a previous version of 

this design had arcing problems between the keeper electrode and the orifice.  In this 

case, the orifice was graphite, which has a low sustaining current and was damaged by 

the arcing.  Originally, a thoriated tungsten orifice plate with a 3mm orifice was included.  

This orifice plate optimized for high current designs was not suited for the low current 

work presented here. As a result, the author had tantalum orifice plates cut by electron 

discharge machining from a 0.25 mm sheet, shown in Figure 16.  Multiple orifice plates 

allowed the depth of the orifice to vary by stacking the plates on top of each other.  The 
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orifice diameter for these plates is 1 mm.  This investigation examined two aspect ratios 

(L/D) for each cathode, 0.5 and 0.25. 

 

Figure 16.  Tantalum Orifice Plates 

 

Figure 17.  Graphite Protection Sleeves 

 Figure 17 displays the graphite sleeves used to protect the emitter from the 

molybdenum tube.  Figure 18 shows these tubes when slipped over the insert.   

 

Figure 18.  Graphite Protection Sleeves with Insert 
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Other materials such as tantalum carbide and rhenium also resist boron diffusion.  

Another consideration for the material used in the cathode tube is its thermal 

conductivity.  For high power applications, thermally insulating the insert is not of great 

concern because the power used by the cathode is a small percent of the total power of 

the thruster.  However, for low power applications, improving the thermal efficiency of 

the design can provide advantages.  The heat loss rate along the length of the cathode 

tube is higher when using materials with higher thermal conductivities.  Since this design 

was intended for medium power applications, the thermal efficiency was not a big 

concern and is not optimal for low power applications.  However, it provides a proof of 

concept platform.  In response to this, improved design suggestions presented later in this 

paper take advantage of the findings of Domonkos for low power applications.17 

 

Figure 19.  Cathode with Graphite Keeper 

The keeper electrode was fabricated out of a single piece of Poco graphite, grade 

AXF-5Q, see Figure 19. This grade has a similar coefficient of thermal expansion to that 

of LaB6.2  It also has a higher purity than most other graphite available.  While the 

coefficient of thermal expansion is not important for the keeper electrode, other parts 
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such as the support tubes and sleeves require it.  Graphite also has a lower sputter yield 

than most materials, thus it provides a robust keeper capable of lifetimes greater than 

other cathode keeper designs.  In addition to heat shielding, the enclosed keeper electrode 

also helped to reduce radiation losses.  The keeper orifice was 6 mm and spaced 1 mm 

from the cathode orifice.  While the large orifice was optimized for higher current 

applications, it may have provided some advantage.  Goebel observed larger keeper 

orifice diameters like the one used here reduced the plume mode transition point for 

certain operating conditions.2 

 The only electrical current conducted to the keeper electrode was that emitted 

from the orifice of the cathode.  Ceramic insulators placed between the keeper electrode 

and mounting plate ensured this.  Small shoulder insulators between mounting screws 

and the electrode provided additional isolation from cathode potential surfaces such as 

the mounting plate.  In addition to Figure 19, Figure 20 and Figure 21 show these 

insulators as well. 

 

Figure 20.  Ceramic Insulators between Keeper and Cathode Base 

 

Figure 21.  Shoulder Insulators between Mounting Screws and Keeper Electrode 
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Figure 22.  Tantalum Sheathed Heater Wire 

The heater filament was a tantalum sheathed alumina insulated wire, Figure 22.  

According to vendor data, these filaments operate as high as 1800°C.2  This provided a 

higher operating temperature than the typical magnesium oxide insulated wires.  

Wrapping the filament around the cathode tube 12 times ensured uniform heat 

distribution along the length of the insert.  Placed upstream from the orifice, this filament 

position reduced the heat conduction to and from the heater and the orifice plate.  

Wrapping 0.127 mm thick Tantalum foil around the heater 12 times provided the required 

shielding for self-heating operation.  The author loosely wrapped the shield around the 

heater filament to increase the conduction length and contact resistance. Allowing the foil 

to relax after mounting created a small gap between each layer.  Other than loosely 

wrapping and relaxing the foil after mounting, the author did not take any other measures 

to improve the heat shield. An additional 0.254 mm thick piece of tantalum foil secured 

the thinner shielding and kept it from un-winding. Figure 23 shows the cathode with the 

keeper electrode removed and heat shield present. 

 

Figure 23.  Cathode with Keeper Removed 
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Test Assembly 

 The hollow cathode previously described was mounted to the flange shown in 

Figure 24.  An aluminum plate secured to the desired test platform acted as the mounting 

surface for the flange.  A compression fitting threaded into the rear of the mounting 

flange provided the propellant line connection.  For these experiments, the author aligned 

the keeper exit plane with the anode entrance plane.  The 304L stainless steel anode had a 

5 cm diameter and was 13 cm long.  Figure 24 shows the cathode assembly in its entirety, 

just before testing.   

 

Figure 24.  Hollow Cathode Base Test Assembly 

All wiring used for the cathode assembly was low out gassing vacuum compatible 

materials including Kapton® and Teflon® insulated wires and nickel-plated high-

temperature electrical connections. 
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 Figure 25 is the electrical schematic for the assembly displayed in Figure 24.  

This experiment emulated the basic electrical configuration of Hall and ion thrusters.  

However, there is no magnetic field present and the geometry of the anode is different 

from ion and Hall thruster anodes.  However, it still provides basic electron transport 

properties of the plasma critical to cathode evaluation and thruster design. 

 

Figure 25.  Cathode Assembly Electrical Schematic 

 A Hewlett-Packard 6038A DC power supply controlled the anode.  It was capable 

of 0-60 V and 0-10 A output.  The maximum power level of this supply was 250 W, well 

suited for the low power range investigated here.  The Hewlett-Packard 6033A heater 

power supply was also a 250 W DC power supply, but its output ranges were 0-20 V and 

0-30 A.  Finally, the keeper power supply was a Matsusada REk650-2.5 DC power 

supply.  Capable of 650 V and 2.5 A with 1625 W of total output power.  All negative 

leads of the power supplies were grounded.  A low-pass filter not included in the 

schematic attenuated voltage oscillation frequencies above 10MHz. 
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 The next portion of the base test assembly is the propellant feed system.  The 

propellant used here was 99.9995% pure xenon, also called “grade 5”.  The flow 

requirements of hollow cathodes are very low when compared to other rocket 

technologies, about one mg/s or less.  A precision MKS mass flow controller calibrated 

for 0-10 sccm of xenon controlled the cathode flow.  Figure 26 is the schematic for this 

propellant feed and control system. 

 

Figure 26.  Xenon Propellant Feed Schematic 

Data Acquisition and Measurement Equipment 

 Several measurable parameters during cathode operation provided information 

about its stand-alone and integrated thruster performance.  The first two fundamental 

quantities measured here were current and voltage.  Connected in series with the anode, 
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heater, and keeper, calibrated shunt resistors provided an accurate way to measure the 

current in a circuit.  A National Instruments® SCXI- 1321 4-channel readout measured 

and logged the voltage across each resistor and a LabVIEW® program used Ohm’s Law 

to calculate the current through each one. Figure 25 shows the resistors and their 

locations within the overall circuit.  A Tektronix® 420 A, 200 MHz digitizing 

oscilloscope monitored the anode voltage and keeper waveforms during cathode 

operation.  The voltages reported were slightly higher than the actual component voltage.  

There was a potential drop across the eight feet of wires to the oscilloscope.  This 

difference was only one or two volts. 

 The National Instruments readout had 8-bit resolution and a sampling rate of 

50 kHz.  With this low sampling rate, any oscillations above 25 kHz were aliased or 

attenuated.  As a result, the readout could not collect reliable data about plume mode 

oscillations.  Rather, the readouts provided average currents and qualitative information 

about the behavior of the cathode and stability information.  The author neglected the 

voltage drop across the wires from the shunt resistors to the readout because signal 

current was low and the length was negligible. 

 The oscilloscope had a 400 mV resolution and a sampling rate of 200 MHz.  The 

oscilloscope records 500 data points for each sample time.  Signal resolution drops with 

larger sample times and may cause small jumps in voltage.  However, this will not 

introduce any considerable error because the difference between spot and plume mode 

voltage behavior is significant.  Additionally, plume mode voltage oscillations are much 

higher than 400 mV, typically at 5 volts or more.      
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Langmuir Probe 

 In addition to voltage and current, the cathode plasma properties provide 

information on how it affects the life and efficiency of the cathode and ultimately its 

respective space application.  Many measurement instruments are available for collecting 

plasma data, one of which is a single Langmuir probe.  Other types of probes include a 

Faraday probe, double Langmuir probe, emissive probe, ExB probe, and retarding 

potential analyzer.  Hutchinson provides a comprehensive text for most of these 

devices.40  The single Langmuir probe was used in this research due to availability.  The 

probe was built by Scientific Systems and contains all the control and acquisition 

electronics in one package.  The data analysis component was included in the supplied 

Smartsoft® software.  Figure 27 is an image of the Langmuir probe during hollow 

cathode operation.           

 

 

Figure 27.  Langmuir probe 

 The concept behind the operation of this measurement device is relatively simple.  

In this case, the probe was a small tungsten wire, 0.19 mm outside diameter with 
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2.41 mm exposed length.  The whole coupling plasma is not isotropic but the small 

region exposed to the probe’s tip is assumed to be.  There are some density gradients over 

the length of the probe.  The isotropic approximation will introduce some uncertainty not 

quantified in the data presented here.  A Macor® ceramic insulator contained the probe 

tip and a shielded co-axial cable carried the signal to the computer.  All single Langmuir 

Probes collect current by applying a voltage to the probe wire.  This voltage typically 

starts at a negative value (~-10 V) and linearly increases to a positive value (~40 V).  The 

plasma response to this voltage sweep develops the distinct curve in Figure 28. 
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Figure 28.  I-V Curve for 10 A Anode Current and 8 sccm Xenon 

 The region of the curve called the ion saturation region is when the probe is at a 

large negative potential relative to the voltage of the plasma.  Here the probe is at a 

sufficient negative voltage to repel all of the electrons in the plasma and saturates itself 
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with ion current.  This region of the curve allows the calculation of ion current, number 

density, and flux.  Additionally, the plasma floating potential is calculated near the end of 

this region when the ion and electron flux is equal.  Smartsoft® software employs the 

theory developed by Laframboise to calculate ion number density.41  This theory 

accounts for the sheath that develops around the probe, described by equation 5. 

   
e

P
ds kT

VVd −
≅ λ      (5) 

V is the applied potential to the probe, ds is the sheath width, and λD is the Debye length.  

Laframboise developed a family of curves, showing the relationship between ion current, 

a range of Debye lengths, and probe radii.41  Smartsoft® uses an algorithm that condenses 

this family of curves into a series of equations to calculate ion current, and ion number 

density.  The sheath thickness expands with probe potential and lower plasma density 

effectively increasing the collection “area”.  Without considering the sheath expansion, 

the current collected would be different than the true current.  For this research, the 

Langmuir probe diameter was much larger than the Debye length of the plasma, resulting 

in a smaller sheath.  With sufficiently large probe diameter, the sheath around the probe 

is thin and the ion current saturates well.42  More information on this specific algorithm is 

included in the SmartProbe® user manual.  

 The next portion of the I-V curve called the electron retardation region is when 

the electrons with enough energy to overcome the potential barrier of the probe are 

collected.  Assuming thermal equilibrium for the electron distribution, the electron 

current grows exponentially relative to the probe potential.  Smartsoft® uses this portion 

of the curve to calculate the electron temperature.  See equation 6. 
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 The final section of the curve is the electron saturation region.  This region is just 

after the “knee” in Figure 28.  Here the probe is at a higher potential than the plasma and 

becomes saturated with electrons.  Plasma potential is calculated from the slope of this 

region and the electron retardation region.  Here Smartsoft® employs the method of 

intersecting slopes.  A line is drawn along the slope of the 2nd and 3rd regions of the curve 

and the point of intersection is the plasma potential.  At the knee of the curve, the probe 

potential equals the plasma potential.  Any current draw in this region results from slow 

thermal electrons and ions.  With the plasma potential determined, SmartSoft® uses 

equation 7 to calculate the electron number density. 
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 The I-V curve described above is for one voltage sweep.  Typically, spatial 

measurements and averaged stationary measurements are desirable.  The control 

electronics applied a saw-tooth voltage waveform to the probe and collected multiple I-V 

curves.  The probe generated 200 data points for each curve.  For each data point, five 

samples were taken and averaged before making up the respective I-V curve, like that in 

Figure 28.  Then the two curves recorded and averaged resulted in one final I-V curve for 

one location in the coupling plasma region.  The sampling rate of the probe was 200 kHz.  

This equated to a collection time per data point of 0.025 ms.  The entire curve was 

collected in 5 ms. The details described above allowed electron temperature, plasma 

potential, floating potential, and number densities to be calculated.  As previously 
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mentioned, these help describe the nature of the coupling plasma and its relation to life, 

performance, and efficiencies with the cathode integrated into a thruster.    

 For spatial Langmuir probe data, an Aerotech® x-y translation stage positioned 

the cathode relative to the probe.  Figure 29 shows the locations of these data points 

along the centerline of the cathode.  This stage used encoders to measure position and 

regulated the stage velocities to 1 mm/s.  Closed-loop feedback integrated with 

Aerotech® software provided positional data. 

 

Figure 29.  Data Collection Locations 

 When the probe is close to the orifice of the keeper, the current draw becomes 

much higher and has the potential to melt the probe tip or cause it to emit electrons.  

Three precautions mitigated this.  First, compressed air blew through the ceramic shaft to 

cool the probe.  Second, ranges set for the translation stage limited how close the probe 

could get to the keeper orifice.  For most of these measurements, the probe was at least 

5 mm from the keeper orifice exit plane and no further than 25 mm at 1 mm increments.  
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3 mm was the closest any trace came to the keeper orifice.  The final precaution was the 

collection routine designed by Scientific Systems.  The probe control electronics limited 

the maximum voltage when the probe exceeded plasma potential. 

Infrared Imaging 

 To study the temperature behavior of the cathode, the author used a forward-

looking infrared (FLIR®) imaging camera.  Accurate temperature measurements gave 

insight into which cathode operated at a higher temperature.  Using this information, the 

author made definitive observations and conclusions about each cathode’s relative work 

function.  If the CeB6 work function was indeed lower, it should operate at slightly lower 

temperatures for equal electron emission as LaB6.  The temperature data also determined 

if the cathodes were operating at levels that make them susceptible to poisoning.  The 

FLIR® camera was capable of detecting infrared wavelengths from 7.5 to 13 µm, and 

provided a non-intrusive method for measuring cathode temperature.  This temperature 

collection method was advantageous over thermocouples because did not affect the 

discharge process or act as a heat sink for the cathode.  A Zinc Selenide (ZnSe) window 

mounted to the vacuum chamber allowed transmission of the IR waves.  Figure 30 is a 

picture of the camera as it looked through the ZnSe window during cathode operation.   
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Figure 30.  FLIR® Camera Looking Through ZnSe Window 

 For simplicity, the only region of the hollow cathode quantitatively studied and 

corrected for emissivity was the tantalum orifice plate.  A tantalum sheathed, insulated 

type C thermocouple pressed against the orifice plate provided the reference temperature 

necessary to obtain emissivity values for the orifice.  Then the camera was calibrated 

with these emissivity values for the remainder of testing when the thermocouple was 

removed.  The insulated tantalum sheath electrically isolated the thermocouple from 

surfaces at cathode potential.  There was no plasma discharge during the calibration of 

the camera for these tests.  By setting the heater filament current to a range of values, the 

cathode temperature was varied as desired.  The cathode was positioned 13 cm from the 

ZnSe window.  The temperature range tested was 300-700°C.  Basic radiation heat 

transfer methods were implemented to calculate the emissivity using four data points 

from the both the thermocouple and the camera for each temperature. 

 After calibration, side-by-side and positioned in the center of the chamber, the 

cathodes faced the ZnSe window at a distance of 3 m.  Each cathode operated 
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independently from the other to prevent any unintentional coupling between them.  Each 

test point ran for 15 minutes, then two images were taken with the camera.  Because the 

cathode required more time to reach stable operation when changing the propellant flow, 

the anode current was varied first.  When the desired range of current levels was tested, 

starting from lowest to highest, the flow was decreased and the procedure repeated.  

 After collecting the IR images, the emissivity corrections obtained were applied to 

each image using the software provided by FLIR®.  The orifice plate was 10 pixels 

across and the temperature reported included the maximum and minimum. 

 The camera automatically corrected for the transmission of the window from a 

user-defined value.  The ZnSe window had a transmissivity of 0.68, which was 

determined in the lab.  The FLIR® camera also corrected for atmospheric transmission 

between the camera lens and the window.  The user only had to specify the distance 

between the two for this correction to be included.  For this experiment, the camera lens 

was 10 cm from the ZnSe window.  Each temperature recorded by the camera was 

accurate to within +/- 2% over a range of 300-2100°C. 

Microscope Imaging 

 Microscopes documented the state of the hollow cathode inserts before and after 

testing.  A light microscope capable of 10-x magnification captured real color images of 

the inserts before and after the experiment.  These images revealed any signs of damage, 

dimensional changes, and contamination.  They also provided a visual reference to the 

location in which spectral analysis was completed.  The microscope described here is in 

Figure 31.  
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Figure 31.  10x Microscope 

 An Edax electron microscope provided more information for understanding the 

effects of poisoning on the cathode insert, shown in the figure below.  This device 

measured concentrations of the elements that formed on the cathode insert surfaces.  The 

microscope can detect materials with activation energies up to 15 keV.  This machine 

cannot detect elements such as molybdenum, because the applied electric field in the 

electron microscope cannot exceed 30 kV due to hardware limitations.  Specified by the 

vendor, any elements with activation energies more than half the maximum applied 

potential are undetectable or the machine cannot provide accurate data for those 

elements. 
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Figure 32.  Edax Electron Microscope 

High-Speed Imaging 

 The final device used to collect data for this experiment was an X-Treme XS-4 

high-speed imaging camera.  This camera is capable of frame rates as high as 100 kHz.  

However, at higher frame rates, the resolution is lower and the amount of light collected 

is much smaller.  This requires larger apertures or lower frame rates to collect sufficient 

light to distinguish an image.  This camera provided the time dependant behavior of the 

plasma and the data necessary for additional insight into spot and plume mode behavior. 

Cathode Operation Test Points 

 All of the aforementioned equipment collected information about the cathode 

during and after it ran with several xenon flow rates, anode currents, keeper currents, and 

orifice geometries.  The test points included 2 A, 4 A, and 6 A of anode current with 4.5, 
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3, and 1.5 sccm of xenon, maintaining constant vacuum pressure by bleeding in 

background xenon.  The keeper was turned on and off for each of these test points, 

totaling 18 test points per cathode.  When the keeper was off, it electrically floated 

relative to ground.  Some cathodes with higher work functions like the ones used here 

require the keeper to operate while others do not.  This variation determined if either 

cathode is capable of operating without the help of a keeper.  However, when operating 

in space, it is required the cathode keeper be kept on to ensure the main thruster discharge 

can be quickly re-started if needed. 

 Both cathodes operate at the 18 test points previously described.  The CeB6 

cathode was tested at these operating points for one orifice geometry (aspect ratio of 0.5), 

while the LaB6 was tested for two orifice geometries (0.5 and 0.25).  The author 

originally intended for both cathodes to be tested with two orifice configurations, but 

time only permitted this for the LaB6 cathode. 

IV. Analysis and Results 

Cathode Ignition 

 The LaB6 cathode was the first cathode tested.  The term “ignition” or 

“breakdown” describes the beginning of the cathode discharge.  As previously discussed 

in the background section, the keeper begins the extraction of electrons from the cathode 

orifice.  During ignition, the keeper is set to a constant voltage, which stays constant until 

the potential barrier of the insert plasma sheath is broken and electrons begin to flow.  

After breakdown, the keeper voltage drops and the power supply maintains a constant 

current.  For ignition to occur, impregnated cathodes require conditioning procedures 

similar to the following description: 
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1. Pump propellant lines out to the bottle valve. 

2. Purge the propellant lines with 5-10 sccm of propellant for 1-2 hours. 

3. Set heater current to 2-3 A for 1 hour. 

4. Increase heater current to 3-5 A for an hour. 

5. Increase heater current to 6-8 A for 30 minutes. 

6. Start flow, turn on keeper electrode 

The cathode lights once this procedure is completed.  The propellant flow can be turned 

off after the purge and turned back on when ready to light.  The above conditioning 

sequence is only required after the cathode has been open to atmosphere.  Once the 

conditioning is complete and the cathode is under vacuum, the ignition procedure is as 

follows: 

1. Pump propellant lines out to bottle valve. 

2. Set heater current to 6-8 A for 10-15 minutes 

3. Start flow and turn on keeper. 

The voltages required to light impregnated cathodes are typically much lower than 

LaB6 cathodes due to their lower work function.  In addition, after the keeper starts, the 

heater is typically turned off.  When the insert is poisoned or the work function begins to 

rise over time and the cathode performance degrades, higher flow rates and more heater 

power are required to re-light the cathode.   

 Due to the higher work function of LaB6, the initial ignition procedure began with 

slightly higher flow rates than impregnated cathodes needed.  The same heater power and 
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keeper power were used throughout all ignition tests.  For both the 0.5 and 0.25 aspect 

ratio cathodes, the ignition procedure was as follows: 

1. Pumps propellant lines out to the bottle valve. 

2. Set heater to 11.25 A until its voltage reaches 11 V (10 minutes) 

3. Set flow to 4.5 sccm and run for 2 minutes 

4. Set keeper to 650 V, 1 A and turn on. 

The LaB6 cathode was able to start at these conditions consistently with no measurable 

degradation in performance.  With the deeper orifice, the heater filament needed 30-40 W 

for the cathode to maintain discharge at low anode currents (<2.5 A) and flow (<2 sccm) 

with the keeper electrode off.  However, the shallower orifice operated smoothly with no 

heater power at low anode currents (~1.5 A) and flow (~1.5 sccm).  The shallower orifice 

also allowed the LaB6 cathode to run with no heater or anode power.  Only the keeper 

was on during this condition.  Below is an image of the LaB6 cathode at the moment of 

ignition, captured with a high-speed camera. 

 

Figure 33.  LaB6 Cathode Ignition 

 Both cathodes underwent the same ignition process.  During initial tests, the CeB6 

cathode started at the same conditions as the LaB6 cathode, noting that only the deeper 
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orifice geometry was tested.  The author changed the limits of ignition for the CeB6 

cathode to investigate the validity of the reported lower work function.  The lowest 

voltage required to start the CeB6 cathode was 500 V at 1 A of keeper current, 

maintaining heater power and flow at a constant level.  After ignition, no heater power 

was required to maintain keeper only operation.  After further investigation, the heater 

filament of the CeB6 cathode was superior to the LaB6 cathode, and the actual power 

delivered during ignition was 9 Watts more than the LaB6 cathode received. This may 

explain the lower keeper power levels, and requires temperature data to clarify. 

Spot and Plume Mode Characterization 

 Because the anode and orifice configuration is different for many experiments, it 

is difficult to make direct comparisons to other impregnated cathodes.  However, the data 

collection techniques are similar to other studies and provide the same insights into the 

plasma behavior.  This first section discusses the results obtained for both the LaB6 and 

CeB6 cathodes by analysis of the anode and keeper voltage waveform, as well as 

Langmuir probe I-V curves.  The error include in these plots is the statistical variance 

between the 10 samples collected per data point and location.   

LaB6 Cathode 

 The tests begin with the highest anode current and flow rates.  This reduced run 

time because it took longer for the propellant system to stabilize while increasing the 

flow rates rather than decreasing them.  The error included for all the Langmuir probe 

data is the statistical variance between samples.  The variance is usually so small the error 

bars cannot be seen in most the graphs.  The possible perturbations from the probe were 

not quantified in the sake of time and were not included in the error.  The vacuum 
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chamber maintained a pressure of 6.5*10-6 Torr +/-5% during all testing by bleeding 

additional background xenon gas when the cathode flow rate decreased.  Positioning the 

inlet far from the pressure gauge and anode prevented inadvertent discharge or false 

readings. The first data presented are from a Langmuir probe centerline scan for the LaB6 

cathode having an aspect ratio of 0.5 (AR.5).  When the keeper electrode was off it was 

left floating relative to ground potential.   
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Figure 34.  Ion Density for AR.5 at 4.5 sccm  

 Figure 34 displays the ion number density for three anode currents.  The second 

number after the underscore denotes the keeper current.  The AR.5 LaB6 cathode could 

not maintain a stable discharge for this flow at 2 A anode current without the operation of 

the keeper.  This additional current draw allowed the insert temperature to be high 

enough to maintain sufficient electron emission for discharge.  Due to the restrictive 

nature of the orifice, the peak emission occurred close to the exit plane of the keeper, 
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quickly dropping off with increasing axial distance.  In addition, lower anode currents 

clearly show lower ion densities, as expected.  This is simply because less plasma is 

required from the cathode to conduct lower current.  The next figure is a comparison 

between two operating conditions, one with the keeper on and one with it off for one flow 

condition. 
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Figure 35.  Ion Density with Keeper on and off for AR.5 at 4.5 sccm 

For the case displayed in the above plot, the ion density appears to increase with 

increasing keeper current.  However, it did not appear to have any considerable affect on 

how far the peak ion density extended from the keeper orifice. 

 Electron density exhibited a similar behavior as ion density, decreasing with 

decreasing anode current and peak densities occurring near the orifice, Figure 36 and 

Figure 37.  The number densities were not indicative of the plasmoids or plasma ball 
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structures characteristic to plume mode behavior.  The keeper also did not appear to have 

a significant effect on the penetration of the electrons downstream of the keeper.  Plasma 

potential and electron temperature provided more information on the mode the LaB6 

cathode was running at for the 4.5 sccm cases presented. 
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Figure 36.  Electron Density for AR.5 at 4.5 sccm 
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Figure 37.  Electron Density with Keeper on and off for AR.5 at 4.5 sccm 
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 Confirmed by other literature, higher anode currents and lower flow rates induced 

higher electron temperatures within the plasma.15,35,36  All of the electron temperature 

data collected followed this trend and the AR.25 LaB6 had the clearest depiction of this 

behavior.  The plots in the section discussing the AR.25 LaB6 cathode definitively show 

the correlation between electron temperature, anode current, and flow rate discussed 

above. 

 Plasma potential negatively correlated with anode current and flow rate for these 

test conditions.  Figure 38 depicts the relationship between plasma potential and anode 

current.  Ion energy cost increases with higher plasma potentials, lowering the efficiency 

of the thruster.  Ideally, a cathode would require very low flow rates and maintain low 

plasma potentials, reducing the ion energy cost and maximizing the propellant utilization 

efficiency of the thruster.  Running the keeper lowered the plasma potential by a very 

small amount, but showed the negative correlation between plasma potential and anode 

current.  However, keeper operation does not provide any efficiency advantage because 

its power input is a loss for a thruster.  So leaving it is more for ensuring the discharge is 

maintained and is not used to improve cathode plume performance.  There were 

oscillations in plasma potential from 7-11 mm, possibly induced by the Langmuir probe.  

Scientific Systems did not design the probe for low plasma perturbation.  Other studies 

have taken several measures to limit the effects of the probe on the plasma.15,35,36  It is 

difficult to predict how and to what degree the probe will affect the coupling plasma, but 

not difficult to measure it.  A later section quantifies and discusses the probe effects. 
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Figure 38.  Plasma Potential for AR.5 at 4.5 sccm 

 The voltage waveforms presented below give further insight into the behavior of 

the cathode during these 4.5 sccm operating conditions. 
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Figure 39.  Anode Waveform for 4A Anode, 1A Keeper, 4.5 sccm 
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All operating points for 4.5 sccm displayed very similar waveform behavior as Figure 39, 

having virtually no AC component in the discharge, characteristic of spot mode 

operation.  The keeper voltage also displayed such behavior, depicted in Figure 40. 
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Figure 40.  Keeper Waveform for 4 A Anode, 1 A Keeper and, 4.5 sccm 

The keeper maintained a relatively low potential, despite the cathode having a higher 

insert work function than an impregnated cathode.  This shows the significant impact of 

field enhanced emission caused by the plasma and is one of the primary advantages of 

hollow cathodes over direct emission cathodes. 

Overall, the LaB6 cathode operated in spot mode for all the anode and keeper 

current ranges tested at 4.5 sccm.  The expansions were monotonic and the ion densities 

were similar to the electron densities.  The anode voltage levels did not exceed 40 V or 

exhibit any large AC voltage oscillations.  The electron temperatures were also below 

4 eV and no plasma balls or plasmoids were observed.  Surprisingly, the LaB6 cathode 

was able to operate at all the 4.5 sccm test conditions without any heater power.  For this 
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flow condition, it also demonstrated the ability to run at low anode currents (3 A) without 

any power to the keeper electrode.  

    After decreasing the flow to 3 sccm, the same data were collected.  The graphs 

include each plasma parameter at different anode and keeper currents.  Figure 41. shows 

a similar trend as that observed for the 4.5 sccm case, with the exception of 6 A anode 

current with 1 A keeper current.  It appears there was a localized region of dense plasma 

forming at the exit of the cathode.  As stated by both Martin and Goebel, these regions 

occur further downstream of the cathode under higher flow conditions.35,15  This may 

explain why the localized region was several millimeters from the orifice.  Interestingly 

enough, the localized dense region only occurred with the keeper on for this case. 

 
3 sccm

0.0E+00

5.0E+10

1.0E+11

1.5E+11

2.0E+11

2.5E+11

0 5 10 15 20 25 30

Distance from Orifice (mm)

Io
n 

D
en

si
ty

 (1
/c

m
^3

) 6A_1A

6A_0A

4A_1A

4A_0A

 

Figure 41.  Ion Density for AR.5 at 3 sccm  
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 For every case but the 6 A anode current with 1 A keeper current, the electron 

density was higher than the ion density and both curves had the same general shape.  See 

Figure 42.  As for the exception, its electron density is much lower than the ion and 

followed a trend similar to the ion density curve, but with less prominence.  In the event 

of large AC voltage oscillations, this region of dense plasma may provide the ingredients 

necessary to create high-energy ions that accelerate the wear of the keeper and ultimately 

the cathode.  However, it may not be a significant threat because it is so far away from 

the cathode, the voltage at this operating condition was below 40V, and there were no 

significant oscillations. 
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Figure 42.  Electron Density for AR.5 at 3sccm 

 The electron temperature for 3 sccm followed a similar trend as that of the 

4.5 sccm test point.  The exception was again the 6 A anode current, 1 A keeper current 
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case.  The temperatures for that operating condition were much lower than the rest.  This 

was not indicative of plume mode at all, since higher electron temperatures are 

characteristic of this mode.  However, because the densities were much higher, the 

electron temperatures were lower, which is an expected phenomena. 

 The plasma potential curves in Figure 43 are similar to that of Figure 38.  This 

figure shows how plasma potential increased with lower anode currents and decreased 

with higher ones, the same relationship seen during the 4.5 sccm test point.  As the figure 

shows, the plasma potential stayed relatively constant along the axis of the cathode. 

However, the overall plasma potential at 3 sccm was only slightly lower than the 

4.5 sccm case.  See Figure 44. 

 
3 sccm

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Distance from Orifice (mm)

Pl
as

m
a 

Po
te

nt
ia

l (
V

)

6A_0A
4A_0A
2A_1A

 

Figure 43.  Plasma Potential for AR.5 with Keeper on and off at 3 sccm 
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Figure 44.  Average AR.5 LaB6 Cathode Plasma Potential with Keeper Off 

It also appears the plasma potential experienced the greatest change with flow at low 

anode currents.  As the anode current approaches 6A, the flow had little effect on the 

plasma potential for the conditions examined here.  The keeper also had a small effect on 

plasma potential.  These data are higher than plasma potential values reported for 

impregnated cathodes.35 

 The waveform data collected for the operating points at 3 sccm had no AC 

voltage oscillations, increased anode, or keeper voltages.  As for the 6 A anode and 1 A 

keeper current case, its anode and keeper voltage waveform are displayed in Figure 45, 

and Figure 46, respectively.  A purely DC waveform was not observed here, atypical of 

the other current levels, possibly indicating an intermediate mode.  There were some 

small voltages fluctuations, but they were only a volt or two and did not occur very 

frequently, confirmed by Fourier analysis. 
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Figure 45.  Anode Voltage for 6 A Anode Current and 1 A Keeper Current 
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Figure 46.  Keeper Voltage for 6 A Anode Current and 1 A Keeper Current 
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The final flow condition was 1.5 sccm for this orifice geometry.  The ion densities 

in Figure 47 were lower than the previous flow conditions.  30-40 W of heater power 

were required to run the cathode at currents below 3 A, therefore no Langmuir probe 

traces were taken for these operating conditions.  In some instances, anode currents above 

5 A at 1.5 sccm exceeded the maximum 250 W output of the power supply.  The cases 

presented here were of the times this did not occur.   

There were localized regions of plasma here as well, the following plots are only 

for those instances.  The peak density for 4 A anode current here was much higher than 

the 3 sccm case, but the average density was less than twice the average ion density at 

1.5 sccm. 
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Figure 47.  Ion Density for AR.5 at 1.5 sccm 
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Figure 48.  Electron Density for AR.5 at 1.5 sccm 

 The electron densities in Figure 48 are lower than the 4.5 sccm flow condition, 

also an expected trend.  They were about equal to the ion density however, slightly 

different from previously observed.  The peak densities also occurred closer to the keeper 

orifice than observed by others for lower flow conditions.15,35  As previously mentioned, 

keeper operation takes the cathode out of plume mode, but the graphs presented above 

show plasmoid structures for cases with the keeper on and off.  The plasmoids can still 

form while the cathode is not in full plume mode, they key was measuring how close they 

are to the keeper.  With the keeper off, as in the 4A case above, the highest plasma 

densities were further from the cathode.  The plasma pulled in and concentrated over a 

smaller distance when the keeper was on, as in the 6A case.  The probe did not measure 
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localized plasma with the keeper off at 6A anode current, perhaps because it was within 

the first 5 or 6 mm of the keeper orifice. 

 The electron temperature did not show much change between either flow 

conditions.  The average electron temperatures of each current setting varied less than 

0.2 eV and were all below 3 eV.  The temperatures were not indicative of a full plume 

mode.  With the localized regions of plasma, these conditions may also be an 

intermediate mode.  Additional data from waveform monitoring helped to define this 

mode of operation, discussed below. 

 Again, it was unclear from the probe traces taken for the 1.5 sccm condition 

whether the cathode was in plume mode or some kind of intermediate.  Martin and 

Williams also found it difficult to determine the mode of operation from Langmuir probe 

data alone.35,36  The voltage waveform for most of the 1.5 sccm tests showed very small 

AC oscillations.  However, some oscillations were present for the anode and keeper at 

6 A anode current and 1 A keeper current, Figure 49 and Figure 50 respectively. 
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Figure 49.  Anode Voltage Waveform for AR.5 6 A Anode and 1 A Keeper at 1.5 sccm 
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Figure 50.  Keeper Voltage Waveform for AR.5 6 A Anode and 1 A Keeper at 1.5 sccm 

Fourier analysis revealed a primary frequency of 195 kHz for the anode voltage 

signal.  The keeper voltage oscillated at 937 kHz, much higher than the anode 

oscillations.  The keeper may experience plume mode before it propagates through the 

entire coupling plasma while operating between spot and plume mode.  Large AC 

fluctuations and higher anode voltages would have answered the question about what 

mode the cathode was in at this test point.  However, since the waveforms showed some 

oscillations that are not similar to others at the same flow condition, and there were 

localized plasma regions, the cathode was determined to be in an intermediate mode 

again.  However, after running it a little longer, the cathode displayed some interesting 

behavior when the keeper was off. 

 Almost immediately after turning the keeper off and after the Langmuir probe 

collected data, the discharge voltage suddenly began to oscillate.  Not only were there 

some oscillations in the voltage but in the current as well, see Figure 51.  Here one can 
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see the change in the anode current as soon as the keeper current is zero.  While the 

oscillations in anode current seemed small in amplitude, the voltage told a different story. 
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Figure 51.  LaB6 Current Waveform during possible Plume Mode Operation 

The voltage waveform was not captured during the event, but with the keeper turned off 

at 6 A anode current and 1.5 sccm, the discharge became unstable.  The anode voltage 

drastically increased, exceeding the limit of the power supply.  This explains why the 

anode current dropped several times in the above figure.  This mode was determined to 

be plume mode due to the higher discharge voltage (>50 V) and higher frequency 

oscillations.  On the other hand, when the keeper was on, the discharge was relatively 

smooth and the voltage oscillations small.  A phenomena cited by Kamhawi, stating more 

keeper current helps to inhibit plume mode.13  No Langmuir probe data is available for 

this event, making it unclear whether there was localized plasma or not. 
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One property that may help explain why the localized plasmas form is the plasma 

floating potential.  Upon comparison of Figure 47 and Figure 52, the plasma densities 

drop when the floating potential rises sharply, and the plasma density sharply rises when 

there is a sudden decrease in floating potential.  This phenomenon occurred every time a 

plasmoid formed.  Which property is the dependant variable is unclear. 
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Figure 52.  Floating Potential for AR.5 at 1.5 sccm 

 After the LaB6 cathode performed successfully with an aspect ratio of 0.5, the 

aspect ratio was decreased to 0.25 (AR.25).  The data presented in the next section is for 

this orifice geometry under the same anode current and flow conditions as the others.  

However, for the smaller aspect ratio, the keeper was turned off after the cathode coupled 

with the anode because keeper effects were already observed during the initial LaB6 and 

CeB6 tests.  Only a few select cases have the keeper turned on and set to the standard 1 A. 
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Figure 53.  Ion Density for AR.25 at 4.5 sccm 
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Figure 54.  Ion Density for AR.25 at 4.5 sccm (2) 
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 The keeper slightly increased the ion density close to the cathode as well as 

further downstream, Figure 53 and Figure 54.  The AR.5 LaB6 cathode exhibited the 

same behavior for the same flow condition.  The keeper had little effect on the electron 

density, also observed with the AR.5 cathode.  Ion density was slightly higher than 

electron density in most cases.  The density curves along the centerline of the AR.25 

geometry in Figure 53-56 show the expected increase with higher currents.  Even after 

reducing the aspect ratio, the penetration of the peak ion density still occurred close to the 

cathode.  Nevertheless, the average ion density was higher for the AR.25 cathode than the 

deeper AR.5 one. 

 Figure 55 is a clear comparison of ion density between the two orifice geometries, 

AR.25 having higher levels as one would expect with a smaller aspect ratio.  This was 

because the smaller aspect ratio allowed the electric field to penetrate further upstream 

into the insert and extract more plasma.15  This behavior was less apparent with electron 

density, Figure 56.  For this property, the orifice had little effect on the electron density.  

It is actually lower at some locations for the smaller aspect ratio with 6 A to the anode.  

The keeper also did not affect the electron density by any significant amount.   As for the 

mode of operation at 4.5 sccm, all of the anode current levels tested were very stable and 

exhibited no plume mode characteristics.  The oscillations were less than one volt and all 

of the anode voltages were below 40 V.  As the density curves will soon prove, all 

expansions were monotonic, and all other plasma properties exhibited no signs of plume 

mode. 
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Figure 55.  Comparison between AR.5 and AR.25 Ion Density at 4.5 sccm 
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Figure 56.  Comparison between AR.5 and AR.25 Electron Density at 4.5 sccm   
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Figure 57.  Electron Temperatures for AR.25 with Keeper Off  

 Figure 57 shows a clear relationship between anode current, flow rate, and 

electron temperature.  As expected, the temperatures were the highest for the 6 A case, 

decreasing with anode current for a given flow rate.  At 4.5 sccm of xenon, the average 

electron temperatures were much higher for AR.5 than AR.25, Figure 58.     

 The plasma potential for both aspect ratios and all flow rates are included in 

Figure 59 and Figure 60.  For one aspect ratio, the plasma potential was unaffected by 

changing flow rate for anode currents above 4 A.  Once the current dropped below 4 A, 

the curves begin to separate.  As plasma potential increased with decreasing anode 

current, the highest plasma potential occurred at 2 A anode current and 4.5 sccm, also 

observed with the AR.5 cathode.  The lowest plasma potential occurred at 2 A for the 

3 sccm flow condition, also observed for the AR.5 cathode. Interestingly, the plasma 

potential was higher with the smaller aspect ratio, Figure 60. 
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Figure 58.  Comparison between AR.5 and AR.25 Average Electron Temperatures  
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Figure 59.  AR.25 Average Plasma Potential  
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Figure 60.  Comparison between AR.5 and AR.25 Average Plasma Potential  

 The change in plasma densities was more noticeable with different aspect ratios at 

3 sccm.  Figure 61 shows just how significant this influence was. 
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Figure 61.  Comparison between AR.5 and AR.25 Ion Density at 3 sccm 
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Figure 62.  Comparison between AR.5 and AR.25 Electron Density at 3 sccm  

Not quite as apparent in Figure 62, the aspect ratio’s impact on electron density was 

slightly less than seen with ion density.  As previously discussed, a smaller aspect ratio 

allowed deeper electric field penetration into the insert and enhanced the performance of 

the cathode by consuming less power. 

 With the flow reduced to 1.5 sccm, ion and electron densities for both aspect 

ratios were lower than the other flow conditions.  Yet between them, AR.25 had higher 

densities. A localized region of plasma formed with 6 A to the anode for both aspect 

ratios, portrayed in Figure 63 and Figure 64.  Note however, the keeper was on for AR.5, 

which lowered the anode voltage and mitigated the plume mode transition based upon the 

observations of this research.  Despite having a localized region of dense plasma, the 

anode and keeper voltages had a small AC component as previously discussed, with one 

exception.  One operating condition transitioned to plume mode after the probe entered 

the near keeper region, discussed here shortly. 
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Figure 63.  Comparison between AR.5 and AR.25 Ion Density at 1.5 sccm 

1.5 sccm

0.00E+00

2.00E+10

4.00E+10

6.00E+10

8.00E+10

1.00E+11

1.20E+11

1.40E+11

1.60E+11

1.80E+11

2.00E+11

0 5 10 15 20 25 30

Distance from Orifice (mm)

E
le

ct
ro

n 
D

en
si

ty
 (1

/c
m

^3
)

6A_.25
4A_.25
6A_.5
4A_.5

 

Figure 64.  Comparison between AR.5 and AR.25 Electron Density at 1.5 sccm  
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 The plasma potential for the AR.25 cathode was higher than the AR.5 cathode for 

low flow rates and anode currents.  At 1.5 sccm, the electron temperatures were lower 

with the AR.25 cathode than the AR.5 one.  After reviewing the floating potential curves, 

they were lower by 2-3 volts in the regions of higher plasma density; otherwise, the 

floating potential was nearly constant along the axis of the cathode with no jumps. 

 With the anode current set to 6 A at 1.5 sccm with the keeper off, it was the only 

condition evident of any plume mode-like behavior for all the AR.25 test points.  Initially 

the voltage showed no signs of any large oscillations, then once the probe got close to the 

cathode orifice, it suddenly induced plume mode, Figure 65.  The highest amplitude 

oscillation here was from the power supply trying to regulate the anode voltage as the 

impedance of the plasma increased. 
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Figure 65.  Plume-Mode for AR.25 with 6A Anode Current at 1.5 sccm  
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Figure 66.  FFT Analysis of Anode Voltage for 6A anode current at 1.5 sccm for AR.25 

Cathode 

 Figure 66 is the Fourier analysis power spectrum of the anode voltage waveform 

in Figure 65.  The three dominant frequencies observed are 11.7, 180, and 199 kHz.  The 

lowest harmonic could be from power supply regulation. The latter two frequencies are 

within the same range observed by Goebel et al for energetic ion production within and at 

the edge of plasmoids.34  The waveforms above do not indicate a location of the 

oscillations within the plasma. Instead they indicate the presence of oscillations 

throughout the coupling plasma and its effects on the anode and keeper voltage. 

As the anode voltage drastically increases, the ionization percentage in the plume 

becomes significant and can lead to ionization instabilities.15  The plasma uses up a large 

portion of the neutral gas and the discharge collapses within the time it takes neutral flow 
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to replenish the starved region.15  During the significant ionization event, high energy 

ions may be created from localized plasma regions and accelerate cathode erosion. 

 The plume mode oscillations in the above figure were apparent in the I-V curve as 

well.  A phenomenon also observed by Martin and Williams.35 After pulling the probe 

away from the cathode, it stayed in plume mode until turning the keeper back on.  

Additionally, after turning the keeper off, the cathode did not return to plume mode until 

the probe re-entered the plasma near the orifice.  The probe induced plume mode after 

repeated attempts to measure close to the keeper orifice.  However, the density curves 

presented in Figure 63 and Figure 64 were collected before the cathode made the 

transition.  This shows the state of the coupling plasma before the onset of plume mode.  

As observed in other cases, when a localized region of plasma forms with no AC 

oscillations or elevated anode voltages, I concluded the cathode was at an intermediate 

between spot and plume mode. 

 This phenomenon showed how much this Langmuir probe affected the plasma 

and ultimately the data collected. The Langmuir probe’s presence increased the anode 

voltage the closer it was to the cathode because it introduced additional impedance 

between the cathode and anode and geometrically interfering with the plasma discharge.  

For 2 A anode current at 1.5 sccm, the anode voltage increased by 1.5 volts when the 

Langmuir Probe was within 10 mm of the keeper orifice. See Figure 67. 
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Figure 67.  Langmuir Probe Perturbation 

 The impedance of the plasma increases during plume mode.33,43  For the 6 A low 

flow condition, the cathode could be at a transition point, only needing a small 

perturbation to affect its impedance, and ultimately tip it into plume mode operation.  

However, despite the measured electron temperatures being slightly higher in this case, 

they were not indicative of “full plume mode” characteristic of average electron 

temperatures as high as 8 eV.35,36  Martin and Williams also observed some measurable 

perturbation using high-speed probes, designed to minimize perturbations to the plasma.  

With their research, the probe had a larger effect on the coupling plasma at lower flow 

rates, also observed here. 

 In summary, the LaB6 cathode showed better performance with a smaller aspect 

ratio.  The electron temperatures were lower, the ion and electron densities were higher, 

but the plasma potential was higher for some conditions.  The key observation about the 
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smaller aspect ratio, was it allowed the cathode to run as low as 1.4 A with the heater and 

keeper turned off at 1.5 sccm of xenon flow.  The only reason the cathode did not operate 

any lower was because the anode voltage exceeded the voltage limit of the power supply.  

The smaller aspect ratio also allowed the cathode to run in a stable intermediate similar to 

spot mode as high as 6 A at 1.5 sccm with the keeper on and heater off.  Tables 1 and 2 

are the complete sets of test conditions for the LaB6 cathode and its mode of operation for 

each aspect ratio.  Anode and keeper voltages, currents, and flow rates are included. 

Mass Flow 
(sccm) Ja (A) Jk (A) Va (V) Vk (V) Mode 

6 

6 1 26.26 15.89 Spot 
0 25.57 N/A Spot 

4 1 27.91 18.22 Spot 
0 27.72 N/A Spot 

2 1 30.44 20.34 Spot 
0 31.18 N/A Spot 

4.5 

6 1 26 16.22 Spot 
0 26.72 N/A Spot 

4 1 27.43 17.83 Spot 
0 27.84 N/A Spot 

2 1 30.23 20.63 Spot 
0 30.95 N/A Spot 

3 

6 1 28.46 17.06 Spot 
0 29.36 N/A Spot 

4 1 30.16 19.24 Spot 
0 30.89 N/A Spot 

2 1 37.51 25.51 Spot 
0 39.18 N/A Spot 

1.5 

6 
1 32.17 19.48 Intermediate 

0 48.17 N/A Plume 
w/probe 

4 1 31.62 21.31 Spot 
0 34.36 N/A Spot 

2 1 38.89 25.46 Spot 
0 42.34 N/A Spot 

Table 1.  AR.25 LaB6 Performance Summary 
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Mass 
Flow 

(sccm) 
Ja (A) Jk (A) Va (V) Vk (V) Mode 

4.5 
4 1 26.1 17.6 Spot 
2 1 32.4 23.6 Spot 

3 
6 

1 27.78 25.15 Spot 
0 31.45 N/A Spot 

4 1 28 18.4 Spot 
2 1 33.3 23.75 Spot 

1.5 
6 

1 30.43 19.88 Intermediate 
0 34 N/A Intermediate 

4 
1 31.9 24.05 Spot 
0 35.24 N/A Intermediate 

Table 2.  AR.5 LaB6 Performance Summary 

 Only some data is available for the AR.5 geometry.  The cathode did not 

transition into plume mode at 6 A anode current at 1.5 sccm. However, it seemed as if it 

were at an intermediate operating condition.  Much higher electron temperatures were 

expected for plume mode than observed.  Consequently, I chose to rely more heavily 

upon waveform monitoring and density curves when distinguishing between modes.  A 

combination of the localized plasmas, high anode voltages, and high frequency 

oscillations may allow for the creation of high-energy ions that limit cathode life, and is 

more indicative of plume mode rather than localized plasma alone.  The only operating 

condition indicative of plume mode is 6 A anode current at 1.5 sccm with the keeper 

turned off for the AR.25 cathode.   

 Direct conclusions about the performance of this cathode in an ion or hall thruster 

require some additional work (i.e. including a magnetic field for ion thruster 

applications).  Without a magnetic field, the ionization efficiency is poor, shown by the 

purple plasma in Figure 87, indicative of high neutral densities rather than ions.  These 
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data can be used to better understand cathode phenomena as a whole, in addition to how 

the boride cathodes behave as a part of this family and that they demonstrate the ability to 

operate over the same current and flow ranges as other hollow cathodes. 

CeB6 Cathode 

 The CeB6 cathode underwent tests for one aspect ratio of 0.5.  The plots included 

in this section have a comparison to the LaB6 cathode with the same aspect ratio.  The ion 

densities from the CeB6 cathode were higher than the LaB6 cathode, Figure 68 and Figure 

69.  The exception was for the highest anode current, where the density dropped off after 

13 mm from the CeB6 cathode.  The same trend was apparent in Figure 70 and Figure 71 

for electron density. 
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Figure 68.  CeB6 & LaB6 Ion Density Comparison at 4.5 sccm 
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Figure 69.  CeB6 & LaB6 Ion Density Comparison at 4.5 sccm (2) *Keeper On 

4.5 sccm 

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

0 5 10 15 20 25 30

Distance from Orifice (mm)

E
le

ct
ro

n 
D

en
si

ty
 (1

/c
m

^3
)

6A_ceB6
4A_ceB6
6A_laB6
4A_laB6

 

Figure 70.  CeB6 & LaB6 Electron Density Comparison at 4.5 sccm 
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Figure 71.  CeB6 & LaB6 Electron Density Comparison at 4.5 sccm (2)   

 As a whole, the LaB6 cathode had the highest electron temperature and the CeB6 

the lowest, in Figure 72, which only shows the case for 4.5 sccm.  For plasma potential 

however, the LaB6 cathode had the highest potentials at 4.5 sccm.  At 3 sccm, the plasma 

potential was slightly higher from the LaB6 cathode for two of the three anode current 

settings.  Plasma potential did not change considerably between flow rates; the most 

significant factor was the anode current.  Figure 73 is a plot of the average plasma 

potential as a function of flow rate and anode current.  Neither cathode had a significant 

advantage over the other.  This demonstrated the similarities CeB6 and LaB6 have rather 

than the differences.  Up to this point, CeB6 produced slightly higher densities but with 

similar electron temperatures and plasma potentials as LaB6. 
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Figure 72.  CeB6 & LaB6 Average Electron Temperature Comparison  
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Figure 73.  CeB6 & LaB6 Average Plasma Potential Comparison  
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 At 3 sccm no localized regions of plasma appeared within the plume of the CeB6 

cathode in either Figure 74 or Figure 75.  The CeB6 cathode had slightly higher ion and 

electron densities at 3 sccm than the LaB6 cathode.  This difference was more apparent 

between the cathodes at lower flow rates.  None of the above conditions was indicative of 

plume mode behavior at all after reviewing their anode and keeper voltage waveforms. 
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Figure 74.  CeB6 & LaB6 Ion Density Comparison at 3 sccm  
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Figure 75.  CeB6 & LaB6 Electron Density Comparison at 3 sccm 

 Localized regions of plasma appeared for both cathodes at 1.5 sccm in Figure 76 

through Figure 79.  As described by Goebel and Martin, the plasma balls/plasmoids form 

closer to the cathode at lower flow.  For instance, the LaB6 cathode peak density occurred 

at 9 mm at 1.5 sccm and 11 mm at 3 sccm.  While plasma balls were not present in Figure 

75 for most conditions, there are some jumps in density observed for 4 A anode current 

from the LaB6 cathode.  It is not clear why there was such a significant jump in electron 

density for the CeB6 cathode at 4 A anode current.  However, the ion densities agreed 

well between cathodes. 
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Figure 76.  CeB6 & LaB6 Ion Density Comparison at 1.5 sccm 
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Figure 77.  CeB6 & LaB6 Ion Density Comparison at 1.5 sccm (2)  
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Figure 78.  CeB6 & LaB6 Electron Density Comparison at 1.5 sccm 
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Figure 79.  CeB6 & LaB6 Electron Density Comparison at 1.5 sccm (2) 
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 Finally, the plasma floating potential in Figure 80 behaved the same way as 

previously described when plasma balls/plasmoids formed.  Where the potential suddenly 

dropped, there was a sharp increase in density, and where the potential spiked, there was 

a decrease in density.  This behavior occurred every time a plasmoid formed.   
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Figure 80.  CeB6 & LaB6 Floating Potential Comparison at 1.5 sccm 

 The CeB6 cathode’s voltage waveforms were very similar to that of the LaB6 

cathode at 1.5 sccm.  Spot mode occurred for anode currents below 6 A.   There were 

some oscillations, but the amplitude was less than 5 volts, characteristic of normal 

ionization events.15  When the anode current was set to 6 A with the keeper on, the 

cathode transitioned into plume mode.  Having the keeper on or off did not induce or 

eliminate plume mode in this case.  Keeper operation did reduce the amplitude and 

frequency of the anode current oscillations as it did for the LaB6 cathode, but did not 

appear to eliminate plume mode.  It is not entirely clear why this was the case, as the 
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LaB6 cathode transitioned back into spot mode when the keeper was on in other 

instances. 

As one can see in Figure 81 and Figure 83, the anode voltage oscillation is 

typically a sharp increase in potential, while the keeper electrode experiences a sudden 

drop.  If density increases with decreasing potential, then the large positive spikes in 

anode voltage are an event where the anode power supply is struggling to regain the 

current it needs to continue the discharge.  The anode effectively demands more plasma 

and the keeper behaves as if it compensates its potential to deliver.  As the keeper 

potential drops the plasma density increases shortly to answer the current demand.  

Fourier analysis of the waveform in Figure 81 shows the two primary frequencies in the 

anode voltage oscillations were 59 and 644 kHz.  The anode’s voltage signal was 

dominated by frequencies below 1 MHz, having the highest strength for oscillations 

below 700 kHz.  The keeper voltage oscillations were obviously lower in strength.  Its 

two primary harmonics were 59 and 117 kHz.  59 kHz was the primary frequency for 

both the anode and keeper during plume mode.  These data show a coupling effect 

between the anode and keeper when the cathode is in plume mode.  Fourier analysis in 

Figure 84 confirmed the anode-keeper coupling as well.  The keeper’s signals were also 

weaker and more frequency harmonics coincided between the anode and keeper voltage 

signal in Figure 84 than Figure 82.  39 kHz was the primary harmonic for the keeper and 

the anode voltage signal in the latter case.  Another harmonic that occurred in the keeper 

and anode voltage signal was 48 kHz.  This further supports the coupling behavior 

between the anode and keeper oscillations during plume mode.  All of the primary 
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frequency harmonics in the above figures were within the range needed for high-energy 

ion production as postulated by Goebel et al.34     
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Figure 81.  CeB6 Cathode Plume Mode for 6A Anode, 1 A Keeper at 1.5 sccm 
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Figure 82. FFT Analysis of CeB6 Cathode Plume Mode for 6A Anode, 1 A Keeper at 1.5 

sccm 
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Figure 83.  2nd CeB6 Cathode Plume Mode for 6A Anode, 1 A Keeper at 1.5 sccm 
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Figure 84.  FFT Analysis for 2nd CeB6 Cathode Plume Mode for 6A Anode, 1 A Keeper 

at 1.5 sccm 
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For each test point determined to be in plume mode as the waveform in Figure 81 

and Figure 83 shows, the color of the plasma was very different from other modes like 

Figure 39.  During full plume mode, the plasma was blue and while during spot mode, it 

was light purple, Figure 85 and Figure 87.  The intermediate is a mix of these and its 

color is a bluish purple, Figure 86.  The camera settings were identical for each picture.  

When the plume is blue, there is higher presence of fully ionized xenon and low neutral 

density.12,16  When the discharge is starved of propellant, the higher anode potentials of 

plume mode exhausts the neutral density supply and forces the plasma population to have 

more ionized xenon, resulting in a blue plume.  During purple discharge, the ionization 

efficiency is poor, there is a higher concentration of excited neutrals, and less ionized 

xenon.  The intermediate has a mix of neutrals and ions.  These colors are dependant on 

the species and not their energies.  Although the plume has lower ion densities during 

spot mode, it does not mean this is an inefficient mode.  The only reason the discharge is 

purple during spot mode is there is no magnetic field to increase the path length of the 

electrons and improve ionization efficiency.  If a magnetic field were present, both 

plumes would be blue.  However, this is not critical for testing integration into a Hall 

thruster. 
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Figure 85.  LaB6 Cathode in Plume Mode 

 

Figure 86.  LaB6 Cathode in Intermediate Mode 

 

Figure 87.  LaB6 Cathode in Spot Mode 
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 An interesting side note that highlights the importance of time resolved data for 

plasma discharges is Figure 88.  Over the course of 10 minutes, at 1.5 A anode current 

and 1.5 sccm with both the heater and keeper off, the anode voltage increased with time.  

The poisoning section discusses the mechanism for this cause.  Cooling may also increase 

the anode current as the temperature drops. The coupling plasma compensates for this 

decrease in emission from the insert and results in higher anode voltages. 
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Figure 88.  CeB6 Anode Voltage for 1.5A Anode Current at 1.5 sccm 

 Collectively, the CeB6 cathode performed very closely to the LaB6 cathode.  The 

electron temperatures were about the same and the plasma potentials were slightly lower 

than the LaB6 cathode in some cases.  It operated in spot mode for all conditions but one.  

The ion and electron densities were on the same order as the LaB6 cathode.  However, for 

the larger aspect ratio the minimum operating point for the LaB6 cathode was 2.5 A with 

no heater or keeper power at 1.5 sccm.  For the same orifice geometry, the CeB6 cathode 

ran as low as 1.5 A at 1.5 sccm with the heater and keeper turned off.  This showed CeB6 
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had a lower operating limit because it may have had a lower work function and required 

less heat to maintain the same current density as its LaB6 counterpart.  On the other hand, 

it may have had a lower emissivity and actually run hotter, resulting in higher emission 

current densities.  IR imaging helped to answer this question.  Table 3 is a summary of 

the CeB6 cathode with its respective voltages, currents, and mode of operation. 

Mass Flow 
(sccm) Ja (A) Jk (A) Va (V) Vk (V) Mode 

4.5 

6 0 23.6 N/A Spot 

4 
1 23.43 17.12 Spot 
0 23.59 N/A Spot 

2 
1 23.54 22.62 Spot 
0 32.85 N/A Spot 

3 

6 
1 25.95 16.45 Spot 
0 25.09 N/A Spot 

4 
1 27.9 18.18 Spot 
0 29.28 N/A Spot 

2 
1 25.9 25.6 Spot 
0 32.47 N/A Spot 

1.5 

6 
1 42.9 18.53 Plume 
0 43.09 N/A Plume 

4 
1 27.89 N/A Intermediate 
0 31.19 N/A Intermediate 

2 
1 30.68 27.89 Spot 
0 36.36 N/A Spot 

Table 3.  CeB6 Performance Summary 

 After review of this table, the CeB6 hollow cathode did not provide a significant 

advantage over LaB6. The heater power requirements were the same and the ignition 

power requirements were slightly lower for CeB6.  During operation the discharge and 

keeper power (when it was on) were essentially the same, varying by only a few watts, 

discussed in the IR imaging section.  It also had a similar plume mode transition as the 

other cathodes.  
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Infrared Imaging Analysis 

 The primary purpose for IR imaging was to determine which cathode was hotter 

and how this played into evaporation (lifetime) and poisoning.  Low current cathodes run 

at lower temperatures, as described by the Richardson-Duschman relationship.  When the 

insert temperature is sufficiently high, poisoning from other gases are not a problem and 

does not affect the life of the boride cathodes.  However, when the temperatures are too 

low, the tolerance to poisoning decreases and may reach a point where it provides no 

advantage over impregnated cathodes.  Even if the boride cathodes were susceptible to 

poisoning at lower currents, they do provide the advantage of demonstrating the ability to 

regain performance after high temperature bake-out.  IR imaging also provides the 

information necessary for correlating evaporation rate and temperature.  Goebel makes a 

direct comparison between LaB6 and impregnated cathode’s evaporation rates and 

lifetimes.2  He also provides correlations between evaporation rate and emission current 

density.  His results show LaB6 having a lower evaporation rate than type B impregnated 

cathodes at emission current densities below 14 A/cm2.  The temperature information 

collected here will reveal the operating temperatures of these cathodes and their potential 

evaporation rates can be deduced.          

 To collect this important temperature data, each cathode was positioned at the 

center of the vacuum chamber facing the ZnSe window.  Both cathodes’ geometry and 

distance to the anode was identical to guarantee the only variable between them was the 

insert material.  The orifice plates were assumed parallel with the ZnSe window.  The 

author made every effort to ensure this was the case.  The FLIR® camera can select 

regions of the image for analysis, Figure 89 shows the LaB6 cathode and the location 



 

117 

selected.  Thermocam® software calculated the maximum and minimum temperatures of 

the circle indicator.   An average was not used because the emissivity changes with 

temperature over the orifice plate. 

  

Figure 89.  IR Image of LaB6 Cathode with Circle Indicator 

 The first step with IR imaging was calibrating the camera with the total normal 

emissivity of the tantalum orifice plate.  Emissivity values were available in literature, 

but considered unsuitable for these tests.  The values reported from one source for a 

2 mm tantalum wire operating in the range expected for these cathodes never exceeded 

0.25.44  After correcting for the ZnSe window, using this emissivity in the camera caused 

the orifice plate temperature to exceed the expected operating temperature by a few 

hundred degrees Celsius.  This was not realistic since these cathodes were operating at 

very low current compared to past research.2  Many factors play into emissivity values 

such as surface finish, material composition, etc.  To ensure accurate results were 

possible, the best way to calibrate the camera was to put the cathode into the chamber, 
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turn the heater on to its power limit, and take thermocouple readings and IR images from 

the tantalum orifice plate directly.  By using the Stefan-Boltzmann relationship for 

radiation, the emissivity of the tantalum orifice plate was calculated from equation 8.   

    
4

4
IR

TC

T
T

ε =     (8) 

The thermocouple and IR camera temperatures were both known, a simple ratio allowed 

the emissivity of tantalum (assuming the camera detector is 1) to be calculated for a range 

of temperatures.  In addition to emissivity, the camera accounted for a window 

transmissivity correction of 0.68.  Each temperature measurement from the camera was 

an average of four samples.  The resulting plot for emissivities as a function of 

temperature is in Figure 90, which includes standard deviation and camera accuracy 

errors.  This calibration occurred for a set of images similar to Figure 91.   
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Figure 90.  Emissivity Calibration Results 
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Figure 91.  IR Image of LaB6 Cathode with 11.9 A to Heater 

 The emissivities did not change much as the temperature approached 700°C.  

With this, the emissivity stayed at approximately 0.9 for temperatures at or above 700°C; 

and 0.72 for any temperatures below 600°C.  In comparison, emissivity values reported 

for etched tantalum sheets operating below 600°C were 30% lower than observed here.45  

At 1000°C, the emissivity of tantalum in literature was 0.78, 13% lower than the value 

used here for this temperature.  Cade also states the emissivity’s rate of increase is lower 

for temperatures above 1000°C.  Extrapolating his data results in an emissivity for 

tantalum of 0.89 at 1650°C.  This is effectively the same emissivity used for these 

experiments.  All temperatures on the orifice plate recorded by the camera were well 

above or below the 600°C and 700°C temperature thresholds.  In the above image, the 

maximum temperature recorded with a correction of 0.9 is only 1000°C.  This was not of 

great concern because the thermocouple was acting as a heat sink to the cathode, and the 

camera could not see the insert surface temperature, which may be a few hundred degrees 

higher.  This is due to the thermal barrier created by the two orifice plates stacked in front 

of the inserts.  The temperature drop is significant in a vacuum when contact resistance 

between the insert, protective sleeve, protective sleeve and orifice plate, and the two 

orifice plates is considered.   
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 Correcting for the atmosphere, reflected chamber temperature, window, and 

emissivity of the orifice plate, Thermacam® software analyzed the images collected.  

Comparing LaB6 to CeB6 for one orifice geometry (0.5), the graphs provided show the 

cathode’s temperature dependence on flow and current beginning with Figure 92.   
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Figure 92.  LaB6 Cathode IR Results with Keeper Off 

 The temperature varied as much as 500°C across the orifice plate.  The 

temperature increased with anode current as expected and dropped with rising flow rate.  

The higher flow rate may increase convection and slightly lower the measured 

temperature.  This same trend occurred with the keeper turned on, which acted to increase 

the overall temperature as expected, Figure 93.   
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Figure 93.  LaB6 Cathode IR Results with Keeper On 

 As one may have already noticed, the temperatures reported appear considerably 

low.  However, the maximum temperature of the orifice plate was a little closer to what 

was expected. See Figure 94. 
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Figure 94.  Peak Temperature LaB6 IR Results with Keeper On  
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With the keeper off, the peak temperatures were slightly lower in both cathodes and 

followed the same behavior as Figure 94.  In general, the CeB6 cathode temperatures 

were higher, with the same trends observed in Figure 93 and Figure 94.  These 

temperatures were still low and peak around 900°C at best.  Several factors may attribute 

to this.  First, there was a 0.635 mm gap between the insert and the orifice plate, provided 

by the insert protective sleeve.  There was a temperature drop across the sleeve, contact 

resistance between the sleeve and insert, as well as the sleeve and orifice plate.  This 

combination provided the thermal barrier discussed above.  Second, there was no 

radiation shielding/heater filament around the end of the cathode tube housing the orifice 

plate (Figure 22).  The thermocouple also acted as a heat sink to the cathode orifice and 

lowered its temperature during calibration.  A lower thermocouple temperature would 

result in a higher emissivity than is truly exhibited.  All of these factors contribute to the 

absolute temperature error, not the relative.    

 Figures 95 and 96 directly compare CeB6 and LaB6.  Table 4 summarizes the 

nomenclature used to describe the test points of both cathodes.  The figure compares each 

cathode’s performance as a function of these test points.  The cathodes showed 

temperature increasing with current (anode and keeper) and decreasing with flow rate.  

Surprisingly, the CeB6 cathode temperatures were slightly higher than the LaB6 cathode 

temperatures.  They should be lower due to CeB6’s lower work function. Figure 96 

represents the cathodes’ peak temperature measurements.  This trend occurred for all but 

one operating condition. As a result, calibration errors could not contribute to CeB6 

having higher temperatures since both cathodes had the same parameters applied during 
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imaging. A factor that could contribute to CeB6 having higher operating temperatures is 

its power consumption.  

Figure 97 and Figure 98 show the total power used, a sum of the keeper and 

anode power.  This correlated well with the temperature trends observed, having the 

highest power levels for the highest current and lowest flows.  However, no cathode 

provided a significant advantage over the other.  Consequently, the CeB6 cathode’s power 

levels were not significantly higher than LaB6’s and could not be a factor in its higher 

operating temperatures.  The error included for this data accounted for the resolution of 

the oscilloscope and data acquisition card 

 

 
Anode 

Current (A) 
Keeper 

Current (A) 
Flow Rate 

(sccm) 
TP1 6 1 4.5 
TP2 6 0 4.5 
TP3 4 1 4.5 
TP4 4 0 4.5 
TP5 2 1 4.5 
TP6 2 0 4.5 
TP7 6 1 3 
TP8 6 0 3 
TP9 4 1 3 
TP10 4 0 3 
TP11 2 1 3 
TP12 2 0 3 
TP13 6 1 1.5 
TP14 6 0 1.5 
TP15 4 1 1.5 
TP16 4 0 1.5 
TP17 2 1 1.5 
TP18 2 0 1.5 

Table 4.  Cathode Operating Test Points 
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Figure 95.  CeB6 and LaB6 Minimum Temperature Comparison  
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Figure 96.  CeB6 and LaB6 Maximum Temperature Comparison 
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Figure 97.  CeB6 and LaB6 Power Comparison with Keeper off 
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Figure 98.  CeB6 and LaB6 Power Comparison with Keeper on 
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As previously mentioned, the insert temperature may be higher than the orifice 

plate temperature.  The absolute orifice plate temperatures were lower than expected but 

not a concern since the relative temperature trends between CeB6 and LaB6 were 

consistent.  Despite lower absolute temperatures, the LaB6 cathode performance did not 

degrade from poisoning.  However, the CeB6 cathode did require more power after low 

flow and low current test points, and given these temperature data, the formation of 

oxides and contaminants was entirely possible.  As for the higher CeB6 insert 

temperature, there are several possible explanations.  First, the CeB6 cathode may have 

better thermal efficiency.   This may attribute to the slightly higher temperatures, but is 

unlikely to have a significant contribution due to the similarity between the cathodes.  

Second, with a lower theoretical density than the LaB6 insert (and possibly due to the 

formation of contaminates), the CeB6 insert may actually have a closer work function to 

LaB6 than expected.  It may even be higher.  If this were true, it would explain why the 

temperatures were higher.  Third, the inside diameter may have increased, causing the 

temperature of any insert to increase.  This may have occurred if the evaporation rate 

were higher for CeB6 than LaB6.  However, after examination, both cathode’s inside 

diameter did not change.  Lastly, the CeB6 insert work function may indeed be 2.5 eV, 

but its emissivity may be lower, causing it to sustain higher temperatures and emit more 

current.  If this were true, higher temperatures would explain the higher plasma densities 

and lower potentials for some conditions of the CeB6 cathode.  Appendix B contains the 

remaining plots for the CeB6 cathode temperature data. 
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Poisoning Mechanisms 

 Spectral analysis and microscope imaging gave even more information regarding 

the behavior of the inserts after testing.  The images presented here are after 52 hours of 

testing the LaB6 insert and 37 hours for the CeB6 one.  

LaB6 Results 

 The only motivation behind investigating the possible poisoning mechanism for 

the LaB6 insert was to compare it to the CeB6 insert.  Over the course of testing, the LaB6 

cathode did not require higher flow or power to start.  This cathode consistently started at 

the conditions outline in the Cathode Ignition section. Figure 99 shows the end of the 

cylindrical LaB6 insert closest to the orifice plate.  After performing spectral analysis for 

different locations on the insert surface in Figure 99, the primary contaminate on the 

surface was carbon.  There were some trace amounts of tantalum and oxygen.  When the 

author took the insert sample out originally, the carbon deposited on the LaB6 insert 

appeared upstream from the orifice.  To test LaB6’s resistance to contamination, the insert 

ends were swapped and reinserted so the carbon rich end was next to the orifice.  Despite 

having an accumulation of carbon on the insert surface, the emission capability of the 

LaB6 insert did not degrade.  The spectral graph, Figure 100, used to make these 

conclusions only gives elemental information and is for a small region of the insert.  As a 

result, the actual constituents in their compound form were not determined. 
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Figure 99.  LaB6 Insert (Near Orifice Plate) 

 
LaB6 Insert W/ Tantalum and Oxides

0
20
40
60
80

100
120
140
160
180
200

0 2 4 6 8 10 12 14

Activation Energy (KeV)

C
ou

nt
s

 

Figure 100.  Spectral Analysis for LaB6 Insert (near orifice plate) 

 The spectrum in Figure 100 is for the region in Figure 99 calling out “tantalum 

oxides”.  When performing the analysis, the scanning electron microscope analyzed a 

circular spot of a given size then moved to the next one.  The beam focused onto the 

small lighter region of the black ring on the insert, and the software identified tantalum, 
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carbon, and oxygen, along with other normal elements such as lanthanum and boron.  

The color microscope images provided a visual reference for the spectral data.  Based 

upon the known colors of carbon, tantalum, and LaB6, it was thought the lighter grey area 

was some kind of tantalum oxide when Edax called out tantalum and oxygen.  Carbon 

dioxide and lanthanum oxides were ruled out because of their state of matter and colors at 

room temperature, respectively.  Figure 101 shows a normal LaB6 insert spectrum acting 

as the baseline for other scans.   

 

Figure 101.  Normal LaB6 Insert Spectrum 

The next image is for the opposite end of the insert.  When initially removed, this 

end had some oxides and tantalum present, and after rotating it around as mentioned 

above, the tantalum and oxide levels reduced and some carbon began to form, all 

occurring after an additional 15 hours of testing.  Again, this demonstrates the robust 

nature of the LaB6 insert.  Using the same reasoning described above, the main 

contaminate here is carbon with some small amounts of tantalum. 
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Figure 102.  LaB6 Insert (End Opposite of Orifice Plate) 

The images of the locations presented were the only areas with any contaminates.  

The sides of the insert were free from contamination, confirmed by spectral analysis.  

Figure 103 is an image of the LaB6 insert after 52 hours of testing.  It shows no signs of 

evaporative losses, having only a 0.59% +/- 0.007% decrease in mass over the course of 

its use and no dimensional change.  For comparison, Figure 104 shows the insert before 

testing with slightly different lighting. 

 

Figure 103.  LaB6 Insert after 52 Hours of Testing 

 

Figure 104.  LaB6 Insert before Testing 
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 Although some contaminates were detected on the LaB6 inserts, they did not have 

a measurable effect on its performance. Whether the contamination mechanism was by 

diffusion or something else was unclear with this analysis.  The source of the carbon and 

tantalum contamination was from the obvious candidates of the orifice plate and carbon 

components in the cathode.  The oxides however could be from two possible sources: one 

being the propellant lines, the other the small air gap present inside of the cathode, shown 

in Figure 105.  The protection sleeves formed a snug fit inside the cathode tube, with the 

ends pressed against the sleeves by the presence of a spring inside the cathode tube.  This 

configuration effectively formed a small air pocket inside the cathode, while it may not 

be a perfect seal; it is a virtual leak and may provide enough air to form oxides on the 

insert. 

 

Figure 105.  Possible Air Pocket 



 

132 

CeB6 Results 

 The CeB6 cathode behaved much differently than the LaB6 cathode after close 

review by microscopy and spectral analysis.  The most noticeable change was the 

decrease in outer diameter, Figure 106. 

 

Figure 106.  CeB6 Insert w/ Diameter Change 

After weighing the insert, the mass had dropped by 7.83% +/- 0.008% after only 37 hours 

of run time.  Since the CeB6 cathode operated for a shorter period than LaB6 and lost 

more mass, its evaporation rate appears to be higher than expected.  The thinner region of 

the CeB6 insert in Figure 106 coincided with the air pocket described in Figure 105.  

Poisoning of this exposed portion of the insert may have increased its evaporation rate 

and contributed to the large mass loss.  The covered regions showed some signs of CeB6 

evaporation by the coating left on the inside of the protection sleeves, Figure 107.  This 

evaporative deposition occurred for both the LaB6 cathode and CeB6 cathode.     
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Figure 107.  CeB6 Insert Protection Sleeve after Testing 

 Spectral analysis indicated the region of decreased diameter contained tantalum.  

The presence of tantalum may have accelerated the evaporation rate of the insert.  The 

microscope did not detect any oxides and very little carbon in this portion of the insert.  

The concentrations of boron were not low when compared to the uncontaminated 

baseline spectrum.  This eliminates the possibility of boron loss through evaporation or 

diffusion.  Further investigation would provide more information and help clarify the 

process of this contamination and evaporation phenomenon.  

 Another portion of the insert contained some tantalum as well, Figure 108.  It was 

not clear if the region of tantalum formed by diffusion or some other process. Destructive 

analysis may shed light on this contamination mechanism as well.    
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Figure 108.  CeB6 Insert w/Stripe 

 The end of the insert closest to the orifice had oxygen and some carbon present 

with little other than cerium and boron.  The activation energy of some elements was too 

high for the Edax to detect and may be more than the 15 keV limit, such as molybdenum.  

Nevertheless there were some contaminates on this surface, Figure 109.  The opposite 

end only showed some signs of carbon, Figure 110.   

 

Figure 109.  CeB6 Insert (End near Orifice) 
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Figure 110.  CeB6 Insert (End Opposite of Orifice) 

 The air pocket described earlier or oxygen adsorbed by the molybdenum cathode 

tube may have contributed to the contamination of this insert.  Unlike the LaB6 insert, 

CeB6 did show some signs of ignition degradation with time.  Specifically after running 

the CeB6 cathode at or below 1.5 A and 1.5 sccm, it required higher flow rates and longer 

heating time to start. Contamination may have also increased the anode and keeper 

voltages during operation.    

 Based on the poisoning data, this LaB6 insert was more resistant to contamination 

than the CeB6 insert.  CeB6 was also supposed to have a lower evaporation rate, but with 

these observations, that did not appear to be the case.  However, its evaporation rate may 

have been accelerated by the presence of contaminates and requires more investigation.  

Without attempting high temperature bake-out for either cathode after contamination, 

determining if they could regain full emission capability was unclear as well.  Oxygen 

and water vapor pressures in the vacuum chamber were well below the required values 

for contamination, confirmed by the residual gas analyzer (RGA) plot in Figure 111.  The 

remaining spectral graphs are included in appendix A. 



 

136 

0.00E+00

5.00E-09

1.00E-08

1.50E-08

2.00E-08

2.50E-08

0 10 20 30 40 50 60 70 80 90 100
Atomic Mass (AMU)

Pa
rt

ia
l P

re
ss

ur
e 

(T
or

r)

 

Figure 111.  RGA Scan for SPASS Facility during Cathode Testing  

High-Speed Imaging Results 

 High-speed imaging assisted in depicting the behavior of the cathode coupling 

plasma during spot and plume mode.  The camera can observe more than an oscilloscope. 

It can see an oscillation that the oscilloscope might indicate as small.  Intensity variations 

between frames were used to visually distinguish between large and small oscillations.  

For example, if one frame was very bright and one following it is pitch black, this is a 

large oscillation.  If one frame is only slightly brighter than one following it, then the 

oscillation is smaller in magnitude.  Brightness correlated with oscillation amplitude. 

During spot mode, the camera observed very small flickers, typical of normal 

plasma oscillations.  However, the plasma did not oscillate uniformly.  The images taken 

show a non-uniform distribution of light intensity.  Uniform plasmas occurred when the 

light intensity was symmetric about the cathode centerline.  The regions of higher 

Xe

N2 

O2 

H2O 

O 
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intensity light indicated concentrations of high energy electrons.  For spot mode, the 

changes in intensity only appeared to shift the plasma up and down relative to cathode 

centerline rather than move it along the centerline.  The following frames are an 

illustration of the cathode during spot mode.  The top left frame is the earliest and each 

successive frame is 50 microseconds apart.   

   

   

   

   

Figure 112.  High-Speed Images of LaB6 Cathode at 4 A Anode, 0 A Keeper, 4.5 sccm 

 The frame numbering starts at 1 in the top left and 12 on the bottom right.  Frames 

1, 6, and 10 all show lower intensity plasma than the other frames.  Frames 3, 6, and 10 

show examples of non-uniform plasma.  The last two frames seemed misaligned but they 

are actually images of the plasma as it formed in two different locations relative to 

cathode centerline.  The light collected in these images is of the highest intensity within 

the plasma and may exclude lower energy electrons.    
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During plume mode, the oscillations were more prominent.  Captured 17 

microseconds apart, the frames in Figure 113 appear dimmer than Figure 112 because of 

the shorter exposure time.  

   

   

   

   

Figure 113.  High-Speed Images of LaB6 Cathode at 6 A Anode, 1 A Keeper, 1.5 sccm 

The images show how much the electron energy changed during plume mode.  Ion 

density is clearly very low at frames 7-9.  Unlike spot mode, these images show the 

plasma disappearing and reappearing.  From the total sample of frames taken, events like 

the one shown in frames 7-9 occur 60 times in 0.016 seconds.  With a frequency of 

3.5 kHz, this is close to one harmonic observed by Martin and Williams but not typical of 

the high frequency oscillations plume mode is characteristic of.  Instead, this frequency is 

similar to those observed to result from power supply regulation.  Thus, a higher frame 

rate and larger aperture may be required for better analysis.   
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V.  Conclusions and Recommendations 

Conclusions of Research 

 Based upon the findings of this research, the LaB6 cathode proved the superior 

electron emitter, not from an electron emission standpoint, but rather on lifetime and 

poisoning resistance.  Neither cathode provided a significant power savings advantage 

over the other.  The CeB6 cathode had slightly lower electron temperatures and plasma 

potentials, and higher electron and ion densities for some operating conditions.  It also 

demonstrated lower flow and current capability than the AR.5 LaB6 cathode.   

CeB6’s superior plasma characteristics did not appear to result from a lower work 

function, but rather a lower emissivity.  Without additional emissivity studies for the 

CeB6 insert, this research could not quantify its true emissivity, only deduce it based upon 

the findings here.  A low emissivity and lower work function may provide and advantage 

over LaB6, allowing the CeB6 cathode to ignite at lower potentials while operating with 

high temperatures.  Elevated temperatures should provide additional resistance to 

poisoning for any cathode, but did not help CeB6 in this research.  Despite higher 

operating temperatures, the CeB6 cathode succumbed to the effects of contamination and 

showed degradation in performance by requiring more heater power and flow to start 

after running at low flow and current.     

The CeB6 insert’s large mass decrease resulted from a higher evaporation rate 

than published or was accelerated by poisoning.7  The CeB6 insert lost more mass than 

the LaB6 insert, leading one to conclude this sample’s life could be shorter than the LaB6 

cathode, especially since it operated 15-18 hours less.  In contrast, the LaB6 cathode did 

not show any signs of degradation and lost very little mass.   
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Reducing the aspect ratio improved the performance of the LaB6 cathode (and 

would do the same for CeB6) by lowering the electron temperatures and plasma 

potentials, and increasing the ion and electron densities.  There was no significant change 

in power consumption but this orifice geometry allowed the LaB6 cathode to run at power 

levels as low as the CeB6 cathode.  After operating at these conditions, the LaB6 cathode 

did not require more flow and power to light as its CeB6 counterpart began to show.   

Both cathodes also had similar spot and plume mode transitions.  Each was either 

in or close to plume mode at 1.5 sccm with equal or greater than 6 A anode current and 

the keeper turned off.  All cathodes stabilized or transitioned out of plume mode with the 

keeper on for a wide range of anode currents and did not require excessive flow to 

maintain spot mode emission.   

With these conclusions, the LaB6 cathode is a viable electron emitter for low 

power electric propulsion technology.  Poisoning does not affect the insert, despite 

having lower operating temperatures at low current.  Even with a higher work function, 

the operating range was as wide as impregnated cathodes.  The CeB6 cathode had slightly 

better emission traits than LaB6.  The evaporation and poisoning effects observed may 

limit its life and make a CeB6 insert with this density difficult to integrate into hollow 

cathodes.  Nevertheless, the lanthanum hexaboride cathode would provide lifetime 

benefits over impregnated cathodes for a wide range of currents (1.4A-100A).  The tables 

summarizing the cathode’s performance are included here again. 
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Mass Flow 
(sccm) Ja (A) Jk (A) Va (V) Vk (V) Mode 

6 

6 1 26.26 15.89 Spot 
0 25.57 N/A Spot 

4 1 27.91 18.22 Spot 
0 27.72 N/A Spot 

2 1 30.44 20.34 Spot 
0 31.18 N/A Spot 

4.5 

6 1 26 16.22 Spot 
0 26.72 N/A Spot 

4 1 27.43 17.83 Spot 
0 27.84 N/A Spot 

2 1 30.23 20.63 Spot 
0 30.95 N/A Spot 

3 

6 1 28.46 17.06 Spot 
0 29.36 N/A Spot 

4 1 30.16 19.24 Spot 
0 30.89 N/A Spot 

2 1 37.51 25.51 Spot 
0 39.18 N/A Spot 

1.5 

6 
1 32.17 19.48 Intermediate 

0 48.17 N/A Plume 
w/probe 

4 1 31.62 21.31 Spot 
0 34.36 N/A Spot 

2 1 38.89 25.46 Spot 
0 42.34 N/A Spot 

Table 1.  AR.25 LaB6 Performance Summary 
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Mass 
Flow 

(sccm) 
Ja (A) Jk (A) Va (V) Vk (V) Mode 

4.5 
4 1 26.1 17.6 Spot 
2 1 32.4 23.6 Spot 

3 
6 

1 27.78 25.15 Spot 
0 31.45 N/A Spot 

4 1 28 18.4 Spot 
2 1 33.3 23.75 Spot 

1.5 
6 

1 30.43 19.88 Intermediate 
0 34 N/A Intermediate 

4 
1 31.9 24.05 Spot 
0 35.24 N/A Intermediate 

Table 2.  AR.5 LaB6 Performance Summary 

Mass 
Flow 

(sccm) 
Ja (A) Jk (A) Va (V) Vk (V) Mode 

4.5 

6 0 23.6 N/A Spot 

4 
1 23.43 17.12 Spot 
0 23.59 N/A Spot 

2 
1 23.54 22.62 Spot 
0 32.85 N/A Spot 

3 

6 
1 25.95 16.45 Spot 
0 25.09 N/A Spot 

4 
1 27.9 18.18 Spot 
0 29.28 N/A Spot 

2 
1 25.9 25.6 Spot 
0 32.47 N/A Spot 

1.5 

6 
1 42.9 18.53 Plume 
0 43.09 N/A Plume 

4 
1 27.89 N/A Intermediate 
0 31.19 N/A Intermediate 

2 
1 30.68 27.89 Spot 
0 36.36 N/A Spot 

Table 3.  CeB6 Performance Summary 
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Recommendations for Future Research 

The first suggestion addresses the CeB6 insert.  It is unclear why the insert’s 

outside diameter decreased the most in the region exposed to the air pocket.  It appeared 

the evaporation rate of the insert was lower in the regions covered by the protective 

sleeves.  Future studies should look into using one sleeve to cover the entire length of the 

insert and determine if it would reduce the insert’s evaporation rate and prolong its 

lifetime.  A possible added benefit to this modification would be to remove the air pocket 

that exists in the current design and eliminate it as a possible poisoning source.  Future 

work should also extend the contamination investigation with destructive analysis to 

determine if the contaminates are forming on the surface or have diffused into the bulk of 

the insert.  Until recently the highest theoretical density possible for the CeB6 insert was 

70%, new samples may go as high as the LaB6 insert (80-90%).46  The higher density 

samples may perform better and would be a worthy subject to apply the preceding 

recommendations.  It would be ideal if single crystals could be arranged in a geometry to 

substitute the hollow polycrystalline insert.  Single crystals have 100% theoretical density 

and because the work function depends on their plane orientation, they can be positioned 

so the lowest work function plane faces the insert plasma.  Some of these alternative 

insert geometries prototyped from A-P-Tech® are included in appendix C.  A final 

experiment should measure the emissivity of the polycrystalline insert, since the 

availability of this data is scarce.  A combination of these tests would fully determine if 

CeB6 is a viable hollow cathode emitter.   
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The next phase of research for LaB6 should investigate a 3.2 mm cathode.  This 

reduces the power and flow requirements.  The 6.4 mm cathode used in this study had a 

large thermal mass and was not tailored for low current designs.  A challenge to designers 

of the 3.2 mm cathodes, especially ones using LaB6, is minimizing conduction of heat to 

the base of the cathode.  This heat loss reduces the temperature of the insert and 

sometimes requires heater operation, more heater power, or special care in the cathode 

tube design.  LaB6 requires more power to ignite, adding another challenge to the design. 

Without excessive flow and power, it may be difficult to make an orifice small enough 

for a low current cathode, yet large enough so it can light.  Large orifice diameters allow 

the cathode to light with less power, but require more flow to maintain spot mode.  A 

good trade-off is a small orifice, with a very shallow depth.  With the work presented 

here, an aspect ratio of 0.25 allowed the cathode to run at low flow and current, its depth 

was not restricted by electron beam welding temperatures because the orifice plate was 

pressed between the insert and the lip of the cathode tube.  However, a solution is a 

chamfer on the cathode orifice, ultimately reducing the depth and allowing the orifice 

plate to be electron beam welded. 

An additional challenge with the LaB6 cathode is its higher work function, 

requiring a very good thermal design and careful material selection for key components.  

A suggested material by Domonkos is titanium, due to its low thermal conductivity, high 

strength, and low sputter yield.  Another possible candidate for the cathode tube would be 

pyrolytic graphite.  Graphite has a low sputter yield, good compatibility with the LaB6 

insert, and is very anisotropic.  During the initial investigation into the use of this 

material for a cathode tube, the author found several companies capable of making the 
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tube out of this material.  However, the plane orientation was such that the high thermal 

conductivity plane (comparable to copper) was along the length of the tube, and the low 

was radially across it.47  This would allow the heat to very quickly transfer from the insert 

to the base, but effectively act as an insulator between the insert and the heater, making a 

thermally inefficient design.  The challenge was finding a company that made the 

pyrolytic graphite such that the plane orientation would maximize heat transfer radially 

and minimize it axially.  Mintech Pyrogenic Group in Easton, Pennsylvania can make a 

very small pyrolytic graphite cathode tube, 3.2-6.4 mm diameter at 2.5 cm in length.  The 

design could be similar to the one presented in this research, in Figure 114, with the 

exception of the dimensions.    

 

Figure 114.  3.2 mm LaB6 Cathode Design 

 Some important considerations not immediately apparent in the above figure are 

the diameter (3.2 mm) and the length (2.5 cm).  The insert length would be 10 mm and 
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the remaining parts scale accordingly. The figure above is a rough drawing of the basic 

cathode concept, not paying any special attention to the relative dimensions but rather the 

raw assembly.  The cathode tube wall would actually be much thinner as well as some of 

the other parts.  The primary benefit of the smaller dimensions of the cathode would 

reduce the thermal mass and improve its thermal efficiency.  If not a pyrolytic graphite 

tube, a titanium one would provide a good alternative.  Pyrolytic graphite support tubes 

would act as insulators between the insert and cathode base.  A single graphite protective 

sleeve with a small pyrolytic washer would at as one between the insert and the orifice 

plate.  The very high cross plane resistance and excellent compatibility with LaB6 makes 

pyrolytic graphite a material worthy of investigation for use in 6.4 and 3.2 mm cathodes 

whether it is as a cathode tube or internal components.  Special care with the radiation 

shielding would minimize losses through the heater wire. 

Another challenge with an anisotropic material is the coefficient of thermal 

expansion (CTE).  For the design presented above, the lowest CTE would be radially and 

highest axially.  Consequently, dimensional tolerances would be an important 

consideration when constructing this cathode. The final step would be to test the 3.2 mm 

cathode with this anode geometry and apply a magnetic field.  The magnetic field is not 

as important for Hall thrusters as it is for ion thrusters.  After experimentation in a triode, 

the cathode could then integrate into an ion or hall thruster.     
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Appendix A.  Spectral Analysis Data 
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Figure 115.  CeB6 Insert End near Orifice Spectrum 
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Figure 116.  Side of CeB6 Insert Spectrum 
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 CeB6 Insert (Upstream Side)
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Figure 117.  CeB6 Insert End Opposite of Orifice Spectrum 
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Figure 118.  Normal CeB6 Insert Spectrum 
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Figure 119.  Insert end opposite from Orifice Plate Spectrum 
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Figure 120.  Insert end near Orifice Plate Spectrum 



 

150 

 
Normal LaB6 Spectrum 
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Figure 121.  Normal LaB6 Insert Spectrum 
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Appendix B.  CeB6 Temperature Data 
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Figure 122.  Minimum Orifice Plate Temperature (Keeper On) 
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Figure 123.  CeB6 Minimum Orifice Plate Temperature (Keeper Off) 
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Figure 124.  CeB6 Peak Orifice Plate Temperature (Keeper On) 
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Figure 125.  CeB6 Peak Orifice Plate Temperature (Keeper Off) 



 

153 

Appendix C.  Alternative Cathode Insert Geometries 

 

Figure 126.  Single Crystal (100% density) Hollow Cathode Insert Arrangement48 

 

Figure 127.  Single Crystal (100% density) Hollow Cathode Insert Arrangement (2)48 
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Appendix D.  Preliminary CeB6 and LaB6 Cathode Results 
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